Spaces:
Sleeping
Sleeping
File size: 14,046 Bytes
3d85088 62ef5f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import numpy as np
import pandas as pd
from src.utils import (
CenterPadCrop_numpy,
Distortion_with_flow_cpu,
Distortion_with_flow_gpu,
Normalize,
RGB2Lab,
ToTensor,
Normalize,
RGB2Lab,
ToTensor,
CenterPad,
read_flow,
SquaredPadding
)
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
from numpy import random
import os
from PIL import Image
from scipy.ndimage.filters import gaussian_filter
from scipy.ndimage import map_coordinates
import glob
def image_loader(path):
with open(path, "rb") as f:
with Image.open(f) as img:
return img.convert("RGB")
class CenterCrop(object):
"""
center crop the numpy array
"""
def __init__(self, image_size):
self.h0, self.w0 = image_size
def __call__(self, input_numpy):
if input_numpy.ndim == 3:
h, w, channel = input_numpy.shape
output_numpy = np.zeros((self.h0, self.w0, channel))
output_numpy = input_numpy[
(h - self.h0) // 2 : (h - self.h0) // 2 + self.h0, (w - self.w0) // 2 : (w - self.w0) // 2 + self.w0, :
]
else:
h, w = input_numpy.shape
output_numpy = np.zeros((self.h0, self.w0))
output_numpy = input_numpy[
(h - self.h0) // 2 : (h - self.h0) // 2 + self.h0, (w - self.w0) // 2 : (w - self.w0) // 2 + self.w0
]
return output_numpy
class VideosDataset(torch.utils.data.Dataset):
def __init__(
self,
video_data_root,
flow_data_root,
mask_data_root,
imagenet_folder,
annotation_file_path,
image_size,
num_refs=5, # max = 20
image_transform=None,
real_reference_probability=1,
nonzero_placeholder_probability=0.5,
):
self.video_data_root = video_data_root
self.flow_data_root = flow_data_root
self.mask_data_root = mask_data_root
self.imagenet_folder = imagenet_folder
self.image_transform = image_transform
self.CenterPad = CenterPad(image_size)
self.Resize = transforms.Resize(image_size)
self.ToTensor = ToTensor()
self.CenterCrop = transforms.CenterCrop(image_size)
self.SquaredPadding = SquaredPadding(image_size[0])
self.num_refs = num_refs
assert os.path.exists(self.video_data_root), "find no video dataroot"
assert os.path.exists(self.flow_data_root), "find no flow dataroot"
assert os.path.exists(self.imagenet_folder), "find no imagenet folder"
# self.epoch = epoch
self.image_pairs = pd.read_csv(annotation_file_path, dtype=str)
self.real_len = len(self.image_pairs)
# self.image_pairs = pd.concat([self.image_pairs] * self.epoch, ignore_index=True)
self.real_reference_probability = real_reference_probability
self.nonzero_placeholder_probability = nonzero_placeholder_probability
print("##### parsing image pairs in %s: %d pairs #####" % (video_data_root, self.__len__()))
def __getitem__(self, index):
(
video_name,
prev_frame,
current_frame,
flow_forward_name,
mask_name,
reference_1_name,
reference_2_name,
reference_3_name,
reference_4_name,
reference_5_name
) = self.image_pairs.iloc[index, :5+self.num_refs].values.tolist()
video_path = os.path.join(self.video_data_root, video_name)
flow_path = os.path.join(self.flow_data_root, video_name)
mask_path = os.path.join(self.mask_data_root, video_name)
prev_frame_path = os.path.join(video_path, prev_frame)
current_frame_path = os.path.join(video_path, current_frame)
list_frame_path = glob.glob(os.path.join(video_path, '*'))
list_frame_path.sort()
reference_1_path = os.path.join(self.imagenet_folder, reference_1_name)
reference_2_path = os.path.join(self.imagenet_folder, reference_2_name)
reference_3_path = os.path.join(self.imagenet_folder, reference_3_name)
reference_4_path = os.path.join(self.imagenet_folder, reference_4_name)
reference_5_path = os.path.join(self.imagenet_folder, reference_5_name)
flow_forward_path = os.path.join(flow_path, flow_forward_name)
mask_path = os.path.join(mask_path, mask_name)
#reference_gt_1_path = prev_frame_path
#reference_gt_2_path = current_frame_path
try:
I1 = Image.open(prev_frame_path).convert("RGB")
I2 = Image.open(current_frame_path).convert("RGB")
try:
I_reference_video = Image.open(list_frame_path[0]).convert("RGB") # Get first frame
except:
I_reference_video = Image.open(current_frame_path).convert("RGB") # Get current frame if error
reference_list = [reference_1_path, reference_2_path, reference_3_path, reference_4_path, reference_5_path]
while reference_list: # run until getting the colorized reference
reference_path = random.choice(reference_list)
I_reference_video_real = Image.open(reference_path)
if I_reference_video_real.mode == 'L':
reference_list.remove(reference_path)
else:
break
if not reference_list:
I_reference_video_real = I_reference_video
flow_forward = read_flow(flow_forward_path) # numpy
mask = Image.open(mask_path) # PIL
mask = self.Resize(mask)
mask = np.array(mask)
# mask = self.SquaredPadding(mask, return_pil=False, return_paddings=False)
# binary mask
mask[mask < 240] = 0
mask[mask >= 240] = 1
mask = self.ToTensor(mask)
# transform
I1 = self.image_transform(I1)
I2 = self.image_transform(I2)
I_reference_video = self.image_transform(I_reference_video)
I_reference_video_real = self.image_transform(I_reference_video_real)
flow_forward = self.ToTensor(flow_forward)
flow_forward = self.Resize(flow_forward)#, return_pil=False, return_paddings=False, dtype=np.float32)
if np.random.random() < self.real_reference_probability:
I_reference_output = I_reference_video_real # Use reference from imagenet
placeholder = torch.zeros_like(I1)
self_ref_flag = torch.zeros_like(I1)
else:
I_reference_output = I_reference_video # Use reference from ground truth
placeholder = I2 if np.random.random() < self.nonzero_placeholder_probability else torch.zeros_like(I1)
self_ref_flag = torch.ones_like(I1)
outputs = [
I1,
I2,
I_reference_output,
flow_forward,
mask,
placeholder,
self_ref_flag,
video_name + prev_frame,
video_name + current_frame,
reference_path
]
except Exception as e:
print("error in reading image pair: %s" % str(self.image_pairs[index]))
print(e)
return self.__getitem__(np.random.randint(0, len(self.image_pairs)))
return outputs
def __len__(self):
return len(self.image_pairs)
def parse_imgnet_images(pairs_file):
pairs = []
with open(pairs_file, "r") as f:
lines = f.readlines()
for line in lines:
line = line.strip().split("|")
image_a = line[0]
image_b = line[1]
pairs.append((image_a, image_b))
return pairs
class VideosDataset_ImageNet(data.Dataset):
def __init__(
self,
imagenet_data_root,
pairs_file,
image_size,
transforms_imagenet=None,
distortion_level=3,
brightnessjitter=0,
nonzero_placeholder_probability=0.5,
extra_reference_transform=None,
real_reference_probability=1,
distortion_device='cpu'
):
self.imagenet_data_root = imagenet_data_root
self.image_pairs = pd.read_csv(pairs_file, names=['i1', 'i2'])
self.transforms_imagenet_raw = transforms_imagenet
self.extra_reference_transform = transforms.Compose(extra_reference_transform)
self.real_reference_probability = real_reference_probability
self.transforms_imagenet = transforms.Compose(transforms_imagenet)
self.image_size = image_size
self.real_len = len(self.image_pairs)
self.distortion_level = distortion_level
self.distortion_transform = Distortion_with_flow_cpu() if distortion_device == 'cpu' else Distortion_with_flow_gpu()
self.brightnessjitter = brightnessjitter
self.flow_transform = transforms.Compose([CenterPadCrop_numpy(self.image_size), ToTensor()])
self.nonzero_placeholder_probability = nonzero_placeholder_probability
self.ToTensor = ToTensor()
self.Normalize = Normalize()
print("##### parsing imageNet pairs in %s: %d pairs #####" % (imagenet_data_root, self.__len__()))
def __getitem__(self, index):
pa, pb = self.image_pairs.iloc[index].values.tolist()
if np.random.random() > 0.5:
pa, pb = pb, pa
image_a_path = os.path.join(self.imagenet_data_root, pa)
image_b_path = os.path.join(self.imagenet_data_root, pb)
I1 = image_loader(image_a_path)
I2 = I1
I_reference_video = I1
I_reference_video_real = image_loader(image_b_path)
# print("i'm here get image 2")
# generate the flow
alpha = np.random.rand() * self.distortion_level
distortion_range = 50
random_state = np.random.RandomState(None)
shape = self.image_size[0], self.image_size[1]
# dx: flow on the vertical direction; dy: flow on the horizontal direction
forward_dx = (
gaussian_filter((random_state.rand(*shape) * 2 - 1), distortion_range, mode="constant", cval=0) * alpha * 1000
)
forward_dy = (
gaussian_filter((random_state.rand(*shape) * 2 - 1), distortion_range, mode="constant", cval=0) * alpha * 1000
)
# print("i'm here get image 3")
for transform in self.transforms_imagenet_raw:
if type(transform) is RGB2Lab:
I1_raw = I1
I1 = transform(I1)
for transform in self.transforms_imagenet_raw:
if type(transform) is RGB2Lab:
I2 = self.distortion_transform(I2, forward_dx, forward_dy)
I2_raw = I2
I2 = transform(I2)
# print("i'm here get image 4")
I2[0:1, :, :] = I2[0:1, :, :] + torch.randn(1) * self.brightnessjitter
I_reference_video = self.extra_reference_transform(I_reference_video)
for transform in self.transforms_imagenet_raw:
I_reference_video = transform(I_reference_video)
I_reference_video_real = self.transforms_imagenet(I_reference_video_real)
# print("i'm here get image 5")
flow_forward_raw = np.stack((forward_dy, forward_dx), axis=-1)
flow_forward = self.flow_transform(flow_forward_raw)
# update the mask for the pixels on the border
grid_x, grid_y = np.meshgrid(np.arange(self.image_size[0]), np.arange(self.image_size[1]), indexing="ij")
grid = np.stack((grid_y, grid_x), axis=-1)
grid_warp = grid + flow_forward_raw
location_y = grid_warp[:, :, 0].flatten()
location_x = grid_warp[:, :, 1].flatten()
I2_raw = np.array(I2_raw).astype(float)
I21_r = map_coordinates(I2_raw[:, :, 0], np.stack((location_x, location_y)), cval=-1).reshape(
(self.image_size[0], self.image_size[1])
)
I21_g = map_coordinates(I2_raw[:, :, 1], np.stack((location_x, location_y)), cval=-1).reshape(
(self.image_size[0], self.image_size[1])
)
I21_b = map_coordinates(I2_raw[:, :, 2], np.stack((location_x, location_y)), cval=-1).reshape(
(self.image_size[0], self.image_size[1])
)
I21_raw = np.stack((I21_r, I21_g, I21_b), axis=2)
mask = np.ones((self.image_size[0], self.image_size[1]))
mask[(I21_raw[:, :, 0] == -1) & (I21_raw[:, :, 1] == -1) & (I21_raw[:, :, 2] == -1)] = 0
mask[abs(I21_raw - I1_raw).sum(axis=-1) > 50] = 0
mask = self.ToTensor(mask)
# print("i'm here get image 6")
if np.random.random() < self.real_reference_probability:
I_reference_output = I_reference_video_real
placeholder = torch.zeros_like(I1)
self_ref_flag = torch.zeros_like(I1)
else:
I_reference_output = I_reference_video
placeholder = I2 if np.random.random() < self.nonzero_placeholder_probability else torch.zeros_like(I1)
self_ref_flag = torch.ones_like(I1)
# except Exception as e:
# if combo_path is not None:
# print("problem in ", combo_path)
# print("problem in, ", image_a_path)
# print(e)
# return self.__getitem__(np.random.randint(0, len(self.image_pairs)))
# print("i'm here get image 7")
return [I1, I2, I_reference_output, flow_forward, mask, placeholder, self_ref_flag, "holder", pb, pa]
def __len__(self):
return len(self.image_pairs) |