File size: 14,046 Bytes
3d85088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ef5f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import numpy as np
import pandas as pd
from src.utils import (
    CenterPadCrop_numpy,
    Distortion_with_flow_cpu,
    Distortion_with_flow_gpu,
    Normalize,
    RGB2Lab,
    ToTensor,
    Normalize,
    RGB2Lab,
    ToTensor,
    CenterPad,
    read_flow,
    SquaredPadding
)
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
from numpy import random
import os
from PIL import Image
from scipy.ndimage.filters import gaussian_filter
from scipy.ndimage import map_coordinates
import glob



def image_loader(path):
    with open(path, "rb") as f:
        with Image.open(f) as img:
            return img.convert("RGB")


class CenterCrop(object):
    """

    center crop the numpy array

    """

    def __init__(self, image_size):
        self.h0, self.w0 = image_size

    def __call__(self, input_numpy):
        if input_numpy.ndim == 3:
            h, w, channel = input_numpy.shape
            output_numpy = np.zeros((self.h0, self.w0, channel))
            output_numpy = input_numpy[
                (h - self.h0) // 2 : (h - self.h0) // 2 + self.h0, (w - self.w0) // 2 : (w - self.w0) // 2 + self.w0, :
            ]
        else:
            h, w = input_numpy.shape
            output_numpy = np.zeros((self.h0, self.w0))
            output_numpy = input_numpy[
                (h - self.h0) // 2 : (h - self.h0) // 2 + self.h0, (w - self.w0) // 2 : (w - self.w0) // 2 + self.w0
            ]
        return output_numpy


class VideosDataset(torch.utils.data.Dataset):
    def __init__(

        self,

        video_data_root,

        flow_data_root,

        mask_data_root,

        imagenet_folder,

        annotation_file_path,

        image_size,

        num_refs=5, # max = 20

        image_transform=None,

        real_reference_probability=1,

        nonzero_placeholder_probability=0.5,

    ):
        self.video_data_root = video_data_root
        self.flow_data_root = flow_data_root
        self.mask_data_root = mask_data_root
        self.imagenet_folder = imagenet_folder
        self.image_transform = image_transform
        self.CenterPad = CenterPad(image_size)
        self.Resize = transforms.Resize(image_size)
        self.ToTensor = ToTensor()
        self.CenterCrop = transforms.CenterCrop(image_size)
        self.SquaredPadding = SquaredPadding(image_size[0])
        self.num_refs = num_refs

        assert os.path.exists(self.video_data_root), "find no video dataroot"
        assert os.path.exists(self.flow_data_root), "find no flow dataroot"
        assert os.path.exists(self.imagenet_folder), "find no imagenet folder"
        # self.epoch = epoch
        self.image_pairs = pd.read_csv(annotation_file_path, dtype=str)
        self.real_len = len(self.image_pairs)
        # self.image_pairs = pd.concat([self.image_pairs] * self.epoch, ignore_index=True)
        self.real_reference_probability = real_reference_probability
        self.nonzero_placeholder_probability = nonzero_placeholder_probability
        print("##### parsing image pairs in %s: %d pairs #####" % (video_data_root, self.__len__()))

    def __getitem__(self, index):
        (
            video_name,
            prev_frame,
            current_frame,
            flow_forward_name,
            mask_name,
            reference_1_name,
            reference_2_name,
            reference_3_name,
            reference_4_name,
            reference_5_name
        ) = self.image_pairs.iloc[index, :5+self.num_refs].values.tolist()

        video_path = os.path.join(self.video_data_root, video_name)
        flow_path = os.path.join(self.flow_data_root, video_name)
        mask_path = os.path.join(self.mask_data_root, video_name)
        
        prev_frame_path = os.path.join(video_path, prev_frame)
        current_frame_path = os.path.join(video_path, current_frame)
        list_frame_path = glob.glob(os.path.join(video_path, '*'))
        list_frame_path.sort()
        
        reference_1_path = os.path.join(self.imagenet_folder, reference_1_name)
        reference_2_path = os.path.join(self.imagenet_folder, reference_2_name)
        reference_3_path = os.path.join(self.imagenet_folder, reference_3_name)
        reference_4_path = os.path.join(self.imagenet_folder, reference_4_name)
        reference_5_path = os.path.join(self.imagenet_folder, reference_5_name)
        
        flow_forward_path = os.path.join(flow_path, flow_forward_name)
        mask_path = os.path.join(mask_path, mask_name)
        
        #reference_gt_1_path = prev_frame_path
        #reference_gt_2_path = current_frame_path
        try:
            I1 = Image.open(prev_frame_path).convert("RGB")
            I2 = Image.open(current_frame_path).convert("RGB")
            try:
                I_reference_video = Image.open(list_frame_path[0]).convert("RGB") # Get first frame
            except:
                I_reference_video = Image.open(current_frame_path).convert("RGB") # Get current frame if error
            
            reference_list = [reference_1_path, reference_2_path, reference_3_path, reference_4_path, reference_5_path]
            while reference_list: # run until getting the colorized reference
                reference_path = random.choice(reference_list)
                I_reference_video_real = Image.open(reference_path)
                if I_reference_video_real.mode == 'L':
                    reference_list.remove(reference_path)
                else:
                    break
            if not reference_list:
                I_reference_video_real = I_reference_video

            flow_forward = read_flow(flow_forward_path)  # numpy

            mask = Image.open(mask_path)  # PIL
            mask = self.Resize(mask)
            mask = np.array(mask)
            # mask = self.SquaredPadding(mask, return_pil=False, return_paddings=False)
            # binary mask
            mask[mask < 240] = 0
            mask[mask >= 240] = 1
            mask = self.ToTensor(mask)
            
            # transform
            I1 = self.image_transform(I1)
            I2 = self.image_transform(I2)
            I_reference_video = self.image_transform(I_reference_video)
            I_reference_video_real = self.image_transform(I_reference_video_real)
            flow_forward = self.ToTensor(flow_forward)
            flow_forward = self.Resize(flow_forward)#, return_pil=False, return_paddings=False, dtype=np.float32)
            

            if np.random.random() < self.real_reference_probability:
                I_reference_output = I_reference_video_real  # Use reference from imagenet
                placeholder = torch.zeros_like(I1)
                self_ref_flag = torch.zeros_like(I1)
            else:
                I_reference_output = I_reference_video  # Use reference from ground truth
                placeholder = I2 if np.random.random() < self.nonzero_placeholder_probability else torch.zeros_like(I1)
                self_ref_flag = torch.ones_like(I1)

            outputs = [
                I1,
                I2,
                I_reference_output,
                flow_forward,
                mask,
                placeholder,
                self_ref_flag,
                video_name + prev_frame,
                video_name + current_frame,
                reference_path
            ]

        except Exception as e:
            print("error in reading image pair: %s" % str(self.image_pairs[index]))
            print(e)
            return self.__getitem__(np.random.randint(0, len(self.image_pairs)))
        return outputs

    def __len__(self):
        return len(self.image_pairs)


def parse_imgnet_images(pairs_file):
    pairs = []
    with open(pairs_file, "r") as f:
        lines = f.readlines()
        for line in lines:
            line = line.strip().split("|")
            image_a = line[0]
            image_b = line[1]
            pairs.append((image_a, image_b))
    return pairs


class VideosDataset_ImageNet(data.Dataset):
    def __init__(

        self,

        imagenet_data_root,

        pairs_file,

        image_size,

        transforms_imagenet=None,

        distortion_level=3,

        brightnessjitter=0,

        nonzero_placeholder_probability=0.5,

        extra_reference_transform=None,

        real_reference_probability=1,

        distortion_device='cpu'

    ):
        self.imagenet_data_root = imagenet_data_root
        self.image_pairs = pd.read_csv(pairs_file, names=['i1', 'i2'])
        self.transforms_imagenet_raw = transforms_imagenet
        self.extra_reference_transform = transforms.Compose(extra_reference_transform)
        self.real_reference_probability = real_reference_probability
        self.transforms_imagenet = transforms.Compose(transforms_imagenet)
        self.image_size = image_size
        self.real_len = len(self.image_pairs)
        self.distortion_level = distortion_level
        self.distortion_transform = Distortion_with_flow_cpu() if distortion_device == 'cpu' else Distortion_with_flow_gpu()
        self.brightnessjitter = brightnessjitter
        self.flow_transform = transforms.Compose([CenterPadCrop_numpy(self.image_size), ToTensor()])
        self.nonzero_placeholder_probability = nonzero_placeholder_probability
        self.ToTensor = ToTensor()
        self.Normalize = Normalize()
        print("##### parsing imageNet pairs in %s: %d pairs #####" % (imagenet_data_root, self.__len__()))

    def __getitem__(self, index):
        pa, pb = self.image_pairs.iloc[index].values.tolist()
        if np.random.random() > 0.5:
            pa, pb = pb, pa

        image_a_path = os.path.join(self.imagenet_data_root, pa)
        image_b_path = os.path.join(self.imagenet_data_root, pb)

        I1 = image_loader(image_a_path)
        I2 = I1
        I_reference_video = I1
        I_reference_video_real = image_loader(image_b_path)
        # print("i'm here get image 2")
        # generate the flow
        alpha = np.random.rand() * self.distortion_level
        distortion_range = 50
        random_state = np.random.RandomState(None)
        shape = self.image_size[0], self.image_size[1]
        # dx: flow on the vertical direction; dy: flow on the horizontal direction
        forward_dx = (
            gaussian_filter((random_state.rand(*shape) * 2 - 1), distortion_range, mode="constant", cval=0) * alpha * 1000
        )
        forward_dy = (
            gaussian_filter((random_state.rand(*shape) * 2 - 1), distortion_range, mode="constant", cval=0) * alpha * 1000
        )
        # print("i'm here get image 3")
        for transform in self.transforms_imagenet_raw:
            if type(transform) is RGB2Lab:
                I1_raw = I1
            I1 = transform(I1)
        for transform in self.transforms_imagenet_raw:
            if type(transform) is RGB2Lab:
                I2 = self.distortion_transform(I2, forward_dx, forward_dy)
                I2_raw = I2
            I2 = transform(I2)
        # print("i'm here get image 4")
        I2[0:1, :, :] = I2[0:1, :, :] + torch.randn(1) * self.brightnessjitter

        I_reference_video = self.extra_reference_transform(I_reference_video)
        for transform in self.transforms_imagenet_raw:
            I_reference_video = transform(I_reference_video)
        
        I_reference_video_real = self.transforms_imagenet(I_reference_video_real)
        # print("i'm here get image 5")
        flow_forward_raw = np.stack((forward_dy, forward_dx), axis=-1)
        flow_forward = self.flow_transform(flow_forward_raw)

        # update the mask for the pixels on the border
        grid_x, grid_y = np.meshgrid(np.arange(self.image_size[0]), np.arange(self.image_size[1]), indexing="ij")
        grid = np.stack((grid_y, grid_x), axis=-1)
        grid_warp = grid + flow_forward_raw
        location_y = grid_warp[:, :, 0].flatten()
        location_x = grid_warp[:, :, 1].flatten()
        I2_raw = np.array(I2_raw).astype(float)
        I21_r = map_coordinates(I2_raw[:, :, 0], np.stack((location_x, location_y)), cval=-1).reshape(
            (self.image_size[0], self.image_size[1])
        )
        I21_g = map_coordinates(I2_raw[:, :, 1], np.stack((location_x, location_y)), cval=-1).reshape(
            (self.image_size[0], self.image_size[1])
        )
        I21_b = map_coordinates(I2_raw[:, :, 2], np.stack((location_x, location_y)), cval=-1).reshape(
            (self.image_size[0], self.image_size[1])
        )
        I21_raw = np.stack((I21_r, I21_g, I21_b), axis=2)
        mask = np.ones((self.image_size[0], self.image_size[1]))
        mask[(I21_raw[:, :, 0] == -1) & (I21_raw[:, :, 1] == -1) & (I21_raw[:, :, 2] == -1)] = 0
        mask[abs(I21_raw - I1_raw).sum(axis=-1) > 50] = 0
        mask = self.ToTensor(mask)
        # print("i'm here get image 6")
        if np.random.random() < self.real_reference_probability:
            I_reference_output = I_reference_video_real
            placeholder = torch.zeros_like(I1)
            self_ref_flag = torch.zeros_like(I1)
        else:
            I_reference_output = I_reference_video
            placeholder = I2 if np.random.random() < self.nonzero_placeholder_probability else torch.zeros_like(I1)
            self_ref_flag = torch.ones_like(I1)

        # except Exception as e:
        #     if combo_path is not None:
        #         print("problem in ", combo_path)
        #     print("problem in, ", image_a_path)
        #     print(e)
        #     return self.__getitem__(np.random.randint(0, len(self.image_pairs)))
        # print("i'm here get image 7")
        return [I1, I2, I_reference_output, flow_forward, mask, placeholder, self_ref_flag, "holder", pb, pa]

    def __len__(self):
        return len(self.image_pairs)