File size: 6,620 Bytes
3d85088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da5e78e
3d85088
da5e78e
3d85088
 
 
da5e78e
3d85088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from src.models.CNN.ColorVidNet import ColorVidNet
from src.models.vit.embed import SwinModel
from src.models.CNN.NonlocalNet import WarpNet
from src.models.CNN.FrameColor import frame_colorization
import torch
from src.models.vit.utils import load_params
import os
import cv2
from PIL import Image
from PIL import ImageEnhance as IE
import torchvision.transforms as T
from src.utils import (
    RGB2Lab,
    ToTensor,
    Normalize,
    uncenter_l,
    tensor_lab2rgb
)
import numpy as np

class SwinTExCo:
    def __init__(self, weights_path, swin_backbone='swinv2-cr-t-224', device=None):
        if device == None:
            self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        else:
            self.device = device
        
        self.embed_net = SwinModel(pretrained_model=swin_backbone, device=self.device).to(self.device)
        self.nonlocal_net = WarpNet(feature_channel=128).to(self.device)
        self.colornet = ColorVidNet(7).to(self.device)
        
        self.embed_net.eval()
        self.nonlocal_net.eval()
        self.colornet.eval()
        
        self.__load_models(self.embed_net, os.path.join(weights_path, "embed_net.pth"))
        self.__load_models(self.nonlocal_net, os.path.join(weights_path, "nonlocal_net.pth"))
        self.__load_models(self.colornet, os.path.join(weights_path, "colornet.pth"))
        
        self.processor = T.Compose([
            T.Resize((224,224)),
            RGB2Lab(),
            ToTensor(),
            Normalize()
        ])
        
        pass
    
    def __load_models(self, model, weight_path):
        params = load_params(weight_path, self.device)
        model.load_state_dict(params, strict=True)
        
    def __preprocess_reference(self, img):
        color_enhancer = IE.Color(img)
        img = color_enhancer.enhance(1.5)
        return img
    
    def __upscale_image(self, large_IA_l, I_current_ab_predict):
        H, W = large_IA_l.shape[2:]
        large_current_ab_predict = torch.nn.functional.interpolate(I_current_ab_predict, 
                                                                size=(H,W), 
                                                                mode="bilinear", 
                                                                align_corners=False)
        large_IA_l = torch.cat((large_IA_l, large_current_ab_predict), dim=1)
        large_current_rgb_predict = tensor_lab2rgb(large_IA_l)
        return large_current_rgb_predict.cpu()
    
    def __proccess_sample(self, curr_frame, I_last_lab_predict,  I_reference_lab, features_B):
        large_IA_lab = ToTensor()(RGB2Lab()(curr_frame)).unsqueeze(0)
        large_IA_l = large_IA_lab[:, 0:1, :, :].to(self.device)
        
        IA_lab = self.processor(curr_frame)
        IA_lab = IA_lab.unsqueeze(0).to(self.device)
        IA_l = IA_lab[:, 0:1, :, :]
        if I_last_lab_predict is None:
                I_last_lab_predict = torch.zeros_like(IA_lab).to(self.device)
        

        with torch.no_grad():
            I_current_ab_predict, _ = frame_colorization(
                IA_l,
                I_reference_lab,
                I_last_lab_predict,
                features_B,
                self.embed_net,
                self.nonlocal_net,
                self.colornet,
                luminance_noise=0,
                temperature=1e-10,
                joint_training=False
            )
            I_last_lab_predict = torch.cat((IA_l, I_current_ab_predict), dim=1)
            
        IA_predict_rgb = self.__upscale_image(large_IA_l, I_current_ab_predict)
        IA_predict_rgb = (IA_predict_rgb.squeeze(0).cpu().numpy() * 255.)
        IA_predict_rgb = np.clip(IA_predict_rgb, 0, 255).astype(np.uint8)
        
        return I_last_lab_predict, IA_predict_rgb
    
    def predict_video(self, video, ref_image):
        ref_image = self.__preprocess_reference(ref_image)
        
        I_last_lab_predict = None
        
        IB_lab = self.processor(ref_image)
        IB_lab = IB_lab.unsqueeze(0).to(self.device)
        
        with torch.no_grad():
            I_reference_lab = IB_lab
            I_reference_l = I_reference_lab[:, 0:1, :, :]
            I_reference_ab = I_reference_lab[:, 1:3, :, :]
            I_reference_rgb = tensor_lab2rgb(torch.cat((uncenter_l(I_reference_l), I_reference_ab), dim=1)).to(self.device)
            features_B = self.embed_net(I_reference_rgb)
        
        while video.isOpened():
            ret, curr_frame = video.read()
            
            if not ret:
                break
            
            curr_frame = cv2.cvtColor(curr_frame, cv2.COLOR_BGR2RGB)
            curr_frame = Image.fromarray(curr_frame)
            
            I_last_lab_predict, IA_predict_rgb = self.__proccess_sample(curr_frame, I_last_lab_predict, I_reference_lab, features_B)
            
            IA_predict_rgb = IA_predict_rgb.transpose(1,2,0)
            
            yield IA_predict_rgb

        video.release()

    def predict_image(self, image, ref_image):
        ref_image = self.__preprocess_reference(ref_image)
        
        I_last_lab_predict = None
        
        IB_lab = self.processor(ref_image)
        IB_lab = IB_lab.unsqueeze(0).to(self.device)
        
        with torch.no_grad():
            I_reference_lab = IB_lab
            I_reference_l = I_reference_lab[:, 0:1, :, :]
            I_reference_ab = I_reference_lab[:, 1:3, :, :]
            I_reference_rgb = tensor_lab2rgb(torch.cat((uncenter_l(I_reference_l), I_reference_ab), dim=1)).to(self.device)
            features_B = self.embed_net(I_reference_rgb)
        
        curr_frame = image
        I_last_lab_predict, IA_predict_rgb = self.__proccess_sample(curr_frame, I_last_lab_predict, I_reference_lab, features_B)
        
        IA_predict_rgb = IA_predict_rgb.transpose(1,2,0)
        
        return IA_predict_rgb
    
if __name__ == "__main__":
    model = SwinTExCo('checkpoints/epoch_20/')
    
    # Initialize video reader and writer
    video = cv2.VideoCapture('sample_input/video_2.mp4')
    fps = video.get(cv2.CAP_PROP_FPS)
    width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
    video_writer = cv2.VideoWriter('sample_output/video_2_ref_2.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
    
    # Initialize reference image
    ref_image = Image.open('sample_input/refs_2/ref2.jpg').convert('RGB')
    
    for colorized_frame in model.predict_video(video, ref_image):
        video_writer.write(colorized_frame)
        
    video_writer.release()