File size: 1,460 Bytes
62ef5f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import torch
from timm.models.vision_transformer import default_cfgs
from timm.models.helpers import load_pretrained, load_custom_pretrained
from src.models.vit.utils import checkpoint_filter_fn
from src.models.vit.vit import VisionTransformer


def create_vit(model_cfg):
    model_cfg = model_cfg.copy()
    backbone = model_cfg.pop("backbone")

    model_cfg.pop("normalization")
    model_cfg["n_cls"] = 1000
    mlp_expansion_ratio = 4
    model_cfg["d_ff"] = mlp_expansion_ratio * model_cfg["d_model"]

    if backbone in default_cfgs:
        default_cfg = default_cfgs[backbone]
    else:
        default_cfg = dict(
            pretrained=False,
            num_classes=1000,
            drop_rate=0.0,
            drop_path_rate=0.0,
            drop_block_rate=None,
        )

    default_cfg["input_size"] = (
        3,
        model_cfg["image_size"][0],
        model_cfg["image_size"][1],
    )
    model = VisionTransformer(**model_cfg)
    if backbone == "vit_base_patch8_384":
        path = os.path.expandvars("$TORCH_HOME/hub/checkpoints/vit_base_patch8_384.pth")
        state_dict = torch.load(path, map_location="cpu")
        filtered_dict = checkpoint_filter_fn(state_dict, model)
        model.load_state_dict(filtered_dict, strict=True)
    elif "deit" in backbone:
        load_pretrained(model, default_cfg, filter_fn=checkpoint_filter_fn)
    else:
        load_custom_pretrained(model, default_cfg)

    return model