Spaces:
Sleeping
Sleeping
File size: 29,635 Bytes
62ef5f4 3d85088 2b79d08 62ef5f4 3d85088 62ef5f4 3d85088 62ef5f4 3d85088 62ef5f4 3d85088 62ef5f4 3d85088 62ef5f4 3d85088 62ef5f4 3d85088 62ef5f4 3d85088 62ef5f4 3d85088 62ef5f4 3d85088 62ef5f4 3d85088 62ef5f4 3d85088 62ef5f4 3d85088 62ef5f4 2b79d08 62ef5f4 3d85088 62ef5f4 3d85088 62ef5f4 2b79d08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 |
import sys
import time
import numpy as np
from PIL import Image
from skimage import color
from skimage.transform import resize
import src.data.functional as F
import torch
from torch import nn
import torch.nn.functional as F_torch
import torchvision.transforms.functional as F_torchvision
from numba import cuda, jit
import math
import torchvision.utils as vutils
from torch.autograd import Variable
import cv2
rgb_from_xyz = np.array(
[
[3.24048134, -0.96925495, 0.05564664],
[-1.53715152, 1.87599, -0.20404134],
[-0.49853633, 0.04155593, 1.05731107],
]
)
l_norm, ab_norm = 1.0, 1.0
l_mean, ab_mean = 50.0, 0
import numpy as np
from PIL import Image
from skimage.transform import resize
import numpy as np
from PIL import Image
from skimage.transform import resize
class SquaredPadding:
def __init__(self, target_size=384, fill_value=0):
self.target_size = target_size
self.fill_value = fill_value
def __call__(self, img, return_pil=True, return_paddings=False, dtype=np.uint8):
if not isinstance(img, np.ndarray):
img = np.array(img)
ndim = len(img.shape)
H, W = img.shape[:2]
if H > W:
H_new, W_new = self.target_size, int(W/H*self.target_size)
# Resize image
img = resize(img, (H_new, W_new), preserve_range=True).astype(dtype)
# Padding image
padded_size = H_new - W_new
if ndim == 3:
paddings = [(0, 0), (padded_size // 2, (padded_size // 2) + (padded_size % 2)), (0,0)]
elif ndim == 2:
paddings = [(0, 0), (padded_size // 2, (padded_size // 2) + (padded_size % 2))]
padded_img = np.pad(img, paddings, mode='constant', constant_values=self.fill_value)
else:
H_new, W_new = int(H/W*self.target_size), self.target_size
# Resize image
img = resize(img, (H_new, W_new), preserve_range=True).astype(dtype)
# Padding image
padded_size = W_new - H_new
if ndim == 3:
paddings = [(padded_size // 2, (padded_size // 2) + (padded_size % 2)), (0, 0), (0,0)]
elif ndim == 2:
paddings = [(padded_size // 2, (padded_size // 2) + (padded_size % 2)), (0, 0)]
padded_img = np.pad(img, paddings, mode='constant', constant_values=self.fill_value)
if return_pil:
padded_img = Image.fromarray(padded_img)
if return_paddings:
return padded_img, paddings
return padded_img
class UnpaddingSquare():
def __call__(self, img, paddings):
if not isinstance(img, np.ndarray):
img = np.array(img)
H, W = img.shape[0], img.shape[1]
(pad_top, pad_bottom), (pad_left, pad_right), _ = paddings
W_ori = W - pad_left - pad_right
H_ori = H - pad_top - pad_bottom
return img[pad_top:pad_top+H_ori, pad_left:pad_left+W_ori, :]
class UnpaddingSquare_Tensor():
def __call__(self, img, paddings):
H, W = img.shape[1], img.shape[2]
(pad_top, pad_bottom), (pad_left, pad_right), _ = paddings
W_ori = W - pad_left - pad_right
H_ori = H - pad_top - pad_bottom
return img[:, pad_top:pad_top+H_ori, pad_left:pad_left+W_ori]
class ResizeFlow(object):
def __init__(self, target_size=(224,224)):
self.target_size = target_size
pass
def __call__(self, flow):
return F_torch.interpolate(flow.unsqueeze(0), self.target_size, mode='bilinear', align_corners=True).squeeze(0)
class SquaredPaddingFlow(object):
def __init__(self, fill_value=0):
self.fill_value = fill_value
def __call__(self, flow):
H, W = flow.size(1), flow.size(2)
if H > W:
# Padding flow
padded_size = H - W
paddings = (padded_size // 2, (padded_size // 2) + (padded_size % 2), 0, 0)
padded_img = F_torch.pad(flow, paddings, value=self.fill_value)
else:
# Padding flow
padded_size = W - H
paddings = (0, 0, padded_size // 2, (padded_size // 2) + (padded_size % 2))
padded_img = F_torch.pad(flow, paddings, value=self.fill_value)
return padded_img
def gray2rgb_batch(l):
# gray image tensor to rgb image tensor
l_uncenter = uncenter_l(l)
l_uncenter = l_uncenter / (2 * l_mean)
return torch.cat((l_uncenter, l_uncenter, l_uncenter), dim=1)
def batch_lab2rgb_transpose_mc(img_l_mc, img_ab_mc, nrow=8):
if isinstance(img_l_mc, Variable):
img_l_mc = img_l_mc.data.cpu()
if isinstance(img_ab_mc, Variable):
img_ab_mc = img_ab_mc.data.cpu()
if img_l_mc.is_cuda:
img_l_mc = img_l_mc.cpu()
if img_ab_mc.is_cuda:
img_ab_mc = img_ab_mc.cpu()
assert img_l_mc.dim() == 4 and img_ab_mc.dim() == 4, "only for batch input"
img_l = img_l_mc * l_norm + l_mean
img_ab = img_ab_mc * ab_norm + ab_mean
pred_lab = torch.cat((img_l, img_ab), dim=1)
grid_lab = vutils.make_grid(pred_lab, nrow=nrow).numpy().astype("float64")
return (np.clip(color.lab2rgb(grid_lab.transpose((1, 2, 0))), 0, 1) * 255).astype("uint8")
def vgg_preprocess(tensor):
# input is RGB tensor which ranges in [0,1]
# output is BGR tensor which ranges in [0,255]
tensor_bgr = torch.cat((tensor[:, 2:3, :, :], tensor[:, 1:2, :, :], tensor[:, 0:1, :, :]), dim=1)
tensor_bgr_ml = tensor_bgr - torch.Tensor([0.40760392, 0.45795686, 0.48501961]).type_as(tensor_bgr).view(1, 3, 1, 1)
return tensor_bgr_ml * 255
def tensor_lab2rgb(input):
"""
n * 3* h *w
"""
input_trans = input.transpose(1, 2).transpose(2, 3) # n * h * w * 3
L, a, b = (
input_trans[:, :, :, 0:1],
input_trans[:, :, :, 1:2],
input_trans[:, :, :, 2:],
)
y = (L + 16.0) / 116.0
x = (a / 500.0) + y
z = y - (b / 200.0)
neg_mask = z.data < 0
z[neg_mask] = 0
xyz = torch.cat((x, y, z), dim=3)
mask = xyz.data > 0.2068966
mask_xyz = xyz.clone()
mask_xyz[mask] = torch.pow(xyz[mask], 3.0)
mask_xyz[~mask] = (xyz[~mask] - 16.0 / 116.0) / 7.787
mask_xyz[:, :, :, 0] = mask_xyz[:, :, :, 0] * 0.95047
mask_xyz[:, :, :, 2] = mask_xyz[:, :, :, 2] * 1.08883
rgb_trans = torch.mm(mask_xyz.view(-1, 3), torch.from_numpy(rgb_from_xyz).type_as(xyz)).view(
input.size(0), input.size(2), input.size(3), 3
)
rgb = rgb_trans.transpose(2, 3).transpose(1, 2)
mask = rgb > 0.0031308
mask_rgb = rgb.clone()
mask_rgb[mask] = 1.055 * torch.pow(rgb[mask], 1 / 2.4) - 0.055
mask_rgb[~mask] = rgb[~mask] * 12.92
neg_mask = mask_rgb.data < 0
large_mask = mask_rgb.data > 1
mask_rgb[neg_mask] = 0
mask_rgb[large_mask] = 1
return mask_rgb
###### loss functions ######
def feature_normalize(feature_in):
feature_in_norm = torch.norm(feature_in, 2, 1, keepdim=True) + sys.float_info.epsilon
feature_in_norm = torch.div(feature_in, feature_in_norm)
return feature_in_norm
# denormalization for l
def uncenter_l(l):
return l * l_norm + l_mean
def get_grid(x):
torchHorizontal = torch.linspace(-1.0, 1.0, x.size(3)).view(1, 1, 1, x.size(3)).expand(x.size(0), 1, x.size(2), x.size(3))
torchVertical = torch.linspace(-1.0, 1.0, x.size(2)).view(1, 1, x.size(2), 1).expand(x.size(0), 1, x.size(2), x.size(3))
return torch.cat([torchHorizontal, torchVertical], 1)
class WarpingLayer(nn.Module):
def __init__(self, device):
super(WarpingLayer, self).__init__()
self.device = device
def forward(self, x, flow):
"""
It takes the input image and the flow and warps the input image according to the flow
Args:
x: the input image
flow: the flow tensor, which is a 4D tensor of shape (batch_size, 2, height, width)
Returns:
The warped image
"""
# WarpingLayer uses F.grid_sample, which expects normalized grid
# we still output unnormalized flow for the convenience of comparing EPEs with FlowNet2 and original code
# so here we need to denormalize the flow
flow_for_grip = torch.zeros_like(flow).to(self.device)
flow_for_grip[:, 0, :, :] = flow[:, 0, :, :] / ((flow.size(3) - 1.0) / 2.0)
flow_for_grip[:, 1, :, :] = flow[:, 1, :, :] / ((flow.size(2) - 1.0) / 2.0)
grid = (get_grid(x).to(self.device) + flow_for_grip).permute(0, 2, 3, 1)
return F_torch.grid_sample(x, grid, align_corners=True)
class CenterPad_threshold(object):
def __init__(self, image_size, threshold=3 / 4):
self.height = image_size[0]
self.width = image_size[1]
self.threshold = threshold
def __call__(self, image):
# pad the image to 16:9
# pad height
I = np.array(image)
# for padded input
height_old = np.size(I, 0)
width_old = np.size(I, 1)
old_size = [height_old, width_old]
height = self.height
width = self.width
I_pad = np.zeros((height, width, np.size(I, 2)))
ratio = height / width
if height_old / width_old == ratio:
if height_old == height:
return Image.fromarray(I.astype(np.uint8))
new_size = [int(x * height / height_old) for x in old_size]
I_resize = resize(I, new_size, mode="reflect", preserve_range=True, clip=False, anti_aliasing=True)
return Image.fromarray(I_resize.astype(np.uint8))
if height_old / width_old > self.threshold:
width_new, height_new = width_old, int(width_old * self.threshold)
height_margin = height_old - height_new
height_crop_start = height_margin // 2
I_crop = I[height_crop_start : (height_crop_start + height_new), :, :]
I_resize = resize(I_crop, [height, width], mode="reflect", preserve_range=True, clip=False, anti_aliasing=True)
return Image.fromarray(I_resize.astype(np.uint8))
if height_old / width_old > ratio: # pad the width and crop
new_size = [int(x * width / width_old) for x in old_size]
I_resize = resize(I, new_size, mode="reflect", preserve_range=True, clip=False, anti_aliasing=True)
width_resize = np.size(I_resize, 1)
height_resize = np.size(I_resize, 0)
start_height = (height_resize - height) // 2
I_pad[:, :, :] = I_resize[start_height : (start_height + height), :, :]
else: # pad the height and crop
new_size = [int(x * height / height_old) for x in old_size]
I_resize = resize(I, new_size, mode="reflect", preserve_range=True, clip=False, anti_aliasing=True)
width_resize = np.size(I_resize, 1)
height_resize = np.size(I_resize, 0)
start_width = (width_resize - width) // 2
I_pad[:, :, :] = I_resize[:, start_width : (start_width + width), :]
return Image.fromarray(I_pad.astype(np.uint8))
class Normalize(object):
def __init__(self):
pass
def __call__(self, inputs):
inputs[0:1, :, :] = F.normalize(inputs[0:1, :, :], 50, 1)
inputs[1:3, :, :] = F.normalize(inputs[1:3, :, :], (0, 0), (1, 1))
return inputs
class RGB2Lab(object):
def __init__(self):
pass
def __call__(self, inputs):
normed_inputs = np.float32(inputs) / 255.0
rgb_inputs = cv2.cvtColor(normed_inputs, cv2.COLOR_RGB2LAB)
return rgb_inputs
class ToTensor(object):
def __init__(self):
pass
def __call__(self, inputs):
return F.to_mytensor(inputs)
class CenterPad(object):
def __init__(self, image_size):
self.height = image_size[0]
self.width = image_size[1]
def __call__(self, image):
# pad the image to 16:9
# pad height
I = np.array(image)
# for padded input
height_old = np.size(I, 0)
width_old = np.size(I, 1)
old_size = [height_old, width_old]
height = self.height
width = self.width
I_pad = np.zeros((height, width, np.size(I, 2)))
ratio = height / width
if height_old / width_old == ratio:
if height_old == height:
return Image.fromarray(I.astype(np.uint8))
new_size = [int(x * height / height_old) for x in old_size]
I_resize = resize(I, new_size, mode="reflect", preserve_range=True, clip=False, anti_aliasing=True)
return Image.fromarray(I_resize.astype(np.uint8))
if height_old / width_old > ratio: # pad the width and crop
new_size = [int(x * width / width_old) for x in old_size]
I_resize = resize(I, new_size, mode="reflect", preserve_range=True, clip=False, anti_aliasing=True)
width_resize = np.size(I_resize, 1)
height_resize = np.size(I_resize, 0)
start_height = (height_resize - height) // 2
I_pad[:, :, :] = I_resize[start_height : (start_height + height), :, :]
else: # pad the height and crop
new_size = [int(x * height / height_old) for x in old_size]
I_resize = resize(I, new_size, mode="reflect", preserve_range=True, clip=False, anti_aliasing=True)
width_resize = np.size(I_resize, 1)
height_resize = np.size(I_resize, 0)
start_width = (width_resize - width) // 2
I_pad[:, :, :] = I_resize[:, start_width : (start_width + width), :]
return Image.fromarray(I_pad.astype(np.uint8))
class CenterPadCrop_numpy(object):
"""
pad the image according to the height
"""
def __init__(self, image_size):
self.height = image_size[0]
self.width = image_size[1]
def __call__(self, image, threshold=3 / 4):
# pad the image to 16:9
# pad height
I = np.array(image)
# for padded input
height_old = np.size(I, 0)
width_old = np.size(I, 1)
old_size = [height_old, width_old]
height = self.height
width = self.width
padding_size = width
if image.ndim == 2:
I_pad = np.zeros((width, width))
else:
I_pad = np.zeros((width, width, I.shape[2]))
ratio = height / width
if height_old / width_old == ratio:
return I
# if height_old / width_old > threshold:
# width_new, height_new = width_old, int(width_old * threshold)
# height_margin = height_old - height_new
# height_crop_start = height_margin // 2
# I_crop = I[height_start : (height_start + height_new), :]
# I_resize = resize(
# I_crop, [height, width], mode="reflect", preserve_range=True, clip=False, anti_aliasing=True
# )
# return I_resize
if height_old / width_old > ratio: # pad the width and crop
new_size = [int(x * width / width_old) for x in old_size]
I_resize = resize(I, new_size, mode="reflect", preserve_range=True, clip=False, anti_aliasing=True)
width_resize = np.size(I_resize, 1)
height_resize = np.size(I_resize, 0)
start_height = (height_resize - height) // 2
start_height_block = (padding_size - height) // 2
if image.ndim == 2:
I_pad[start_height_block : (start_height_block + height), :] = I_resize[
start_height : (start_height + height), :
]
else:
I_pad[start_height_block : (start_height_block + height), :, :] = I_resize[
start_height : (start_height + height), :, :
]
else: # pad the height and crop
new_size = [int(x * height / height_old) for x in old_size]
I_resize = resize(I, new_size, mode="reflect", preserve_range=True, clip=False, anti_aliasing=True)
width_resize = np.size(I_resize, 1)
height_resize = np.size(I_resize, 0)
start_width = (width_resize - width) // 2
start_width_block = (padding_size - width) // 2
if image.ndim == 2:
I_pad[:, start_width_block : (start_width_block + width)] = I_resize[:, start_width : (start_width + width)]
else:
I_pad[:, start_width_block : (start_width_block + width), :] = I_resize[
:, start_width : (start_width + width), :
]
crop_start_height = (I_pad.shape[0] - height) // 2
crop_start_width = (I_pad.shape[1] - width) // 2
if image.ndim == 2:
return I_pad[crop_start_height : (crop_start_height + height), crop_start_width : (crop_start_width + width)]
else:
return I_pad[crop_start_height : (crop_start_height + height), crop_start_width : (crop_start_width + width), :]
@jit(nopython=True, nogil=True)
def biInterpolation_cpu(distorted, i, j):
i = np.uint16(i)
j = np.uint16(j)
Q11 = distorted[j, i]
Q12 = distorted[j, i + 1]
Q21 = distorted[j + 1, i]
Q22 = distorted[j + 1, i + 1]
return np.int8(
Q11 * (i + 1 - i) * (j + 1 - j) + Q12 * (i - i) * (j + 1 - j) + Q21 * (i + 1 - i) * (j - j) + Q22 * (i - i) * (j - j)
)
@jit(nopython=True, nogil=True)
def iterSearchShader_cpu(padu, padv, xr, yr, W, H, maxIter, precision):
# print('processing location', (xr, yr))
#
if abs(padu[yr, xr]) < precision and abs(padv[yr, xr]) < precision:
return xr, yr
# Our initialize method in this paper, can see the overleaf for detail
if (xr + 1) <= (W - 1):
dif = padu[yr, xr + 1] - padu[yr, xr]
else:
dif = padu[yr, xr] - padu[yr, xr - 1]
u_next = padu[yr, xr] / (1 + dif)
if (yr + 1) <= (H - 1):
dif = padv[yr + 1, xr] - padv[yr, xr]
else:
dif = padv[yr, xr] - padv[yr - 1, xr]
v_next = padv[yr, xr] / (1 + dif)
i = xr - u_next
j = yr - v_next
i_int = int(i)
j_int = int(j)
# The same as traditional iterative search method
for _ in range(maxIter):
if not 0 <= i <= (W - 1) or not 0 <= j <= (H - 1):
return i, j
u11 = padu[j_int, i_int]
v11 = padv[j_int, i_int]
u12 = padu[j_int, i_int + 1]
v12 = padv[j_int, i_int + 1]
int1 = padu[j_int + 1, i_int]
v21 = padv[j_int + 1, i_int]
int2 = padu[j_int + 1, i_int + 1]
v22 = padv[j_int + 1, i_int + 1]
u = (
u11 * (i_int + 1 - i) * (j_int + 1 - j)
+ u12 * (i - i_int) * (j_int + 1 - j)
+ int1 * (i_int + 1 - i) * (j - j_int)
+ int2 * (i - i_int) * (j - j_int)
)
v = (
v11 * (i_int + 1 - i) * (j_int + 1 - j)
+ v12 * (i - i_int) * (j_int + 1 - j)
+ v21 * (i_int + 1 - i) * (j - j_int)
+ v22 * (i - i_int) * (j - j_int)
)
i_next = xr - u
j_next = yr - v
if abs(i - i_next) < precision and abs(j - j_next) < precision:
return i, j
i = i_next
j = j_next
# if the search doesn't converge within max iter, it will return the last iter result
return i_next, j_next
@jit(nopython=True, nogil=True)
def iterSearch_cpu(distortImg, resultImg, padu, padv, W, H, maxIter=5, precision=1e-2):
for xr in range(W):
for yr in range(H):
# (xr, yr) is the point in result image, (i, j) is the search result in distorted image
i, j = iterSearchShader_cpu(padu, padv, xr, yr, W, H, maxIter, precision)
# reflect the pixels outside the border
if i > W - 1:
i = 2 * W - 1 - i
if i < 0:
i = -i
if j > H - 1:
j = 2 * H - 1 - j
if j < 0:
j = -j
# Bilinear interpolation to get the pixel at (i, j) in distorted image
resultImg[yr, xr, 0] = biInterpolation_cpu(
distortImg[:, :, 0],
i,
j,
)
resultImg[yr, xr, 1] = biInterpolation_cpu(
distortImg[:, :, 1],
i,
j,
)
resultImg[yr, xr, 2] = biInterpolation_cpu(
distortImg[:, :, 2],
i,
j,
)
return None
def forward_mapping_cpu(source_image, u, v, maxIter=5, precision=1e-2):
"""
warp the image according to the forward flow
u: horizontal
v: vertical
"""
H = source_image.shape[0]
W = source_image.shape[1]
distortImg = np.array(np.zeros((H + 1, W + 1, 3)), dtype=np.uint8)
distortImg[0:H, 0:W] = source_image[0:H, 0:W]
distortImg[H, 0:W] = source_image[H - 1, 0:W]
distortImg[0:H, W] = source_image[0:H, W - 1]
distortImg[H, W] = source_image[H - 1, W - 1]
padu = np.array(np.zeros((H + 1, W + 1)), dtype=np.float32)
padu[0:H, 0:W] = u[0:H, 0:W]
padu[H, 0:W] = u[H - 1, 0:W]
padu[0:H, W] = u[0:H, W - 1]
padu[H, W] = u[H - 1, W - 1]
padv = np.array(np.zeros((H + 1, W + 1)), dtype=np.float32)
padv[0:H, 0:W] = v[0:H, 0:W]
padv[H, 0:W] = v[H - 1, 0:W]
padv[0:H, W] = v[0:H, W - 1]
padv[H, W] = v[H - 1, W - 1]
resultImg = np.array(np.zeros((H, W, 3)), dtype=np.uint8)
iterSearch_cpu(distortImg, resultImg, padu, padv, W, H, maxIter, precision)
return resultImg
class Distortion_with_flow_cpu(object):
"""Elastic distortion"""
def __init__(self, maxIter=3, precision=1e-3):
self.maxIter = maxIter
self.precision = precision
def __call__(self, inputs, dx, dy):
inputs = np.array(inputs)
shape = inputs.shape[0], inputs.shape[1]
remap_image = forward_mapping_cpu(inputs, dy, dx, maxIter=self.maxIter, precision=self.precision)
return Image.fromarray(remap_image)
@cuda.jit(device=True)
def biInterpolation_gpu(distorted, i, j):
i = int(i)
j = int(j)
Q11 = distorted[j, i]
Q12 = distorted[j, i + 1]
Q21 = distorted[j + 1, i]
Q22 = distorted[j + 1, i + 1]
return np.int8(
Q11 * (i + 1 - i) * (j + 1 - j) + Q12 * (i - i) * (j + 1 - j) + Q21 * (i + 1 - i) * (j - j) + Q22 * (i - i) * (j - j)
)
@cuda.jit(device=True)
def iterSearchShader_gpu(padu, padv, xr, yr, W, H, maxIter, precision):
# print('processing location', (xr, yr))
#
if abs(padu[yr, xr]) < precision and abs(padv[yr, xr]) < precision:
return xr, yr
# Our initialize method in this paper, can see the overleaf for detail
if (xr + 1) <= (W - 1):
dif = padu[yr, xr + 1] - padu[yr, xr]
else:
dif = padu[yr, xr] - padu[yr, xr - 1]
u_next = padu[yr, xr] / (1 + dif)
if (yr + 1) <= (H - 1):
dif = padv[yr + 1, xr] - padv[yr, xr]
else:
dif = padv[yr, xr] - padv[yr - 1, xr]
v_next = padv[yr, xr] / (1 + dif)
i = xr - u_next
j = yr - v_next
i_int = int(i)
j_int = int(j)
# The same as traditional iterative search method
for _ in range(maxIter):
if not 0 <= i <= (W - 1) or not 0 <= j <= (H - 1):
return i, j
u11 = padu[j_int, i_int]
v11 = padv[j_int, i_int]
u12 = padu[j_int, i_int + 1]
v12 = padv[j_int, i_int + 1]
int1 = padu[j_int + 1, i_int]
v21 = padv[j_int + 1, i_int]
int2 = padu[j_int + 1, i_int + 1]
v22 = padv[j_int + 1, i_int + 1]
u = (
u11 * (i_int + 1 - i) * (j_int + 1 - j)
+ u12 * (i - i_int) * (j_int + 1 - j)
+ int1 * (i_int + 1 - i) * (j - j_int)
+ int2 * (i - i_int) * (j - j_int)
)
v = (
v11 * (i_int + 1 - i) * (j_int + 1 - j)
+ v12 * (i - i_int) * (j_int + 1 - j)
+ v21 * (i_int + 1 - i) * (j - j_int)
+ v22 * (i - i_int) * (j - j_int)
)
i_next = xr - u
j_next = yr - v
if abs(i - i_next) < precision and abs(j - j_next) < precision:
return i, j
i = i_next
j = j_next
# if the search doesn't converge within max iter, it will return the last iter result
return i_next, j_next
@cuda.jit
def iterSearch_gpu(distortImg, resultImg, padu, padv, W, H, maxIter=5, precision=1e-2):
start_x, start_y = cuda.grid(2)
stride_x, stride_y = cuda.gridsize(2)
for xr in range(start_x, W, stride_x):
for yr in range(start_y, H, stride_y):
i,j = iterSearchShader_gpu(padu, padv, xr, yr, W, H, maxIter, precision)
if i > W - 1:
i = 2 * W - 1 - i
if i < 0:
i = -i
if j > H - 1:
j = 2 * H - 1 - j
if j < 0:
j = -j
resultImg[yr, xr,0] = biInterpolation_gpu(distortImg[:,:,0], i, j)
resultImg[yr, xr,1] = biInterpolation_gpu(distortImg[:,:,1], i, j)
resultImg[yr, xr,2] = biInterpolation_gpu(distortImg[:,:,2], i, j)
return None
def forward_mapping_gpu(source_image, u, v, maxIter=5, precision=1e-2):
"""
warp the image according to the forward flow
u: horizontal
v: vertical
"""
H = source_image.shape[0]
W = source_image.shape[1]
resultImg = np.array(np.zeros((H, W, 3)), dtype=np.uint8)
distortImg = np.array(np.zeros((H + 1, W + 1, 3)), dtype=np.uint8)
distortImg[0:H, 0:W] = source_image[0:H, 0:W]
distortImg[H, 0:W] = source_image[H - 1, 0:W]
distortImg[0:H, W] = source_image[0:H, W - 1]
distortImg[H, W] = source_image[H - 1, W - 1]
padu = np.array(np.zeros((H + 1, W + 1)), dtype=np.float32)
padu[0:H, 0:W] = u[0:H, 0:W]
padu[H, 0:W] = u[H - 1, 0:W]
padu[0:H, W] = u[0:H, W - 1]
padu[H, W] = u[H - 1, W - 1]
padv = np.array(np.zeros((H + 1, W + 1)), dtype=np.float32)
padv[0:H, 0:W] = v[0:H, 0:W]
padv[H, 0:W] = v[H - 1, 0:W]
padv[0:H, W] = v[0:H, W - 1]
padv[H, W] = v[H - 1, W - 1]
padu = cuda.to_device(padu)
padv = cuda.to_device(padv)
distortImg = cuda.to_device(distortImg)
resultImg = cuda.to_device(resultImg)
threadsperblock = (16, 16)
blockspergrid_x = math.ceil(W / threadsperblock[0])
blockspergrid_y = math.ceil(H / threadsperblock[1])
blockspergrid = (blockspergrid_x, blockspergrid_y)
iterSearch_gpu[blockspergrid, threadsperblock](distortImg, resultImg, padu, padv, W, H, maxIter, precision)
resultImg = resultImg.copy_to_host()
return resultImg
class Distortion_with_flow_gpu(object):
def __init__(self, maxIter=3, precision=1e-3):
self.maxIter = maxIter
self.precision = precision
def __call__(self, inputs, dx, dy):
inputs = np.array(inputs)
shape = inputs.shape[0], inputs.shape[1]
remap_image = forward_mapping_gpu(inputs, dy, dx, maxIter=self.maxIter, precision=self.precision)
return Image.fromarray(remap_image)
def read_flow(filename):
"""
read optical flow from Middlebury .flo file
:param filename: name of the flow file
:return: optical flow data in matrix
"""
f = open(filename, "rb")
try:
magic = np.fromfile(f, np.float32, count=1)[0] # For Python3.x
except:
magic = np.fromfile(f, np.float32, count=1) # For Python2.x
data2d = None
if (202021.25 != magic)and(123.25!=magic):
print("Magic number incorrect. Invalid .flo file")
elif (123.25==magic):
w = np.fromfile(f, np.int32, count=1)[0]
h = np.fromfile(f, np.int32, count=1)[0]
# print("Reading %d x %d flo file" % (h, w))
data2d = np.fromfile(f, np.float16, count=2 * w * h)
# reshape data into 3D array (columns, rows, channels)
data2d = np.resize(data2d, (h, w, 2))
elif (202021.25 == magic):
w = np.fromfile(f, np.int32, count=1)[0]
h = np.fromfile(f, np.int32, count=1)[0]
# print("Reading %d x %d flo file" % (h, w))
data2d = np.fromfile(f, np.float32, count=2 * w * h)
# reshape data into 3D array (columns, rows, channels)
data2d = np.resize(data2d, (h, w, 2))
f.close()
return data2d.astype(np.float32)
class LossHandler:
def __init__(self):
self.loss_dict = {}
self.count_sample = 0
def add_loss(self, key, loss):
if key not in self.loss_dict:
self.loss_dict[key] = 0
self.loss_dict[key] += loss
def get_loss(self, key):
return self.loss_dict[key] / self.count_sample
def count_one_sample(self):
self.count_sample += 1
def reset(self):
self.loss_dict = {}
self.count_sample = 0
class TimeHandler:
def __init__(self):
self.time_handler = {}
def compute_time(self, key):
if key not in self.time_handler:
self.time_handler[key] = time.time()
return None
else:
return time.time() - self.time_handler.pop(key)
def print_num_params(model, is_trainable=False):
model_name = model.__class__.__name__.ljust(30)
if is_trainable:
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"| TRAINABLE | {model_name} | {('{:,}'.format(num_params)).rjust(10)} |")
else:
num_params = sum(p.numel() for p in model.parameters())
print(f"| GENERAL | {model_name} | {('{:,}'.format(num_params)).rjust(10)} |")
return num_params |