Spaces:
Sleeping
Sleeping
from torch import nn | |
from timm import create_model | |
from torchvision.transforms import Normalize | |
class SwinModel(nn.Module): | |
def __init__(self, pretrained_model="swinv2-cr-t-224", device="cuda") -> None: | |
""" | |
vit_tiny_patch16_224.augreg_in21k_ft_in1k | |
swinv2_cr_tiny_ns_224.sw_in1k | |
""" | |
super().__init__() | |
self.device = device | |
self.pretrained_model = pretrained_model | |
if pretrained_model == "swinv2-cr-t-224": | |
self.pretrained = create_model( | |
"swinv2_cr_tiny_ns_224.sw_in1k", | |
pretrained=True, | |
features_only=True, | |
out_indices=[-4, -3, -2, -1], | |
).to(device) | |
elif pretrained_model == "swinv2-t-256": | |
self.pretrained = create_model( | |
"swinv2_tiny_window16_256.ms_in1k", | |
pretrained=True, | |
features_only=True, | |
out_indices=[-4, -3, -2, -1], | |
).to(device) | |
elif pretrained_model == "swinv2-cr-s-224": | |
self.pretrained = create_model( | |
"swinv2_cr_small_ns_224.sw_in1k", | |
pretrained=True, | |
features_only=True, | |
out_indices=[-4, -3, -2, -1], | |
).to(device) | |
else: | |
raise NotImplementedError | |
self.pretrained.eval() | |
self.normalizer = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | |
self.upsample = nn.Upsample(scale_factor=2) | |
for params in self.pretrained.parameters(): | |
params.requires_grad = False | |
def forward(self, x): | |
outputs = self.pretrained(x) | |
if self.pretrained_model in ["swinv2-t-256"]: | |
for i in range(len(outputs)): | |
outputs[i] = outputs[i].permute(0, 3, 1, 2) # Change channel-last to channel-first | |
outputs = [self.upsample(feat) for feat in outputs] | |
return outputs |