Spaces:
Sleeping
Sleeping
# DCGAN-like generator and discriminator | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from torch.nn import Parameter | |
def l2normalize(v, eps=1e-12): | |
return v / (v.norm() + eps) | |
class SpectralNorm(nn.Module): | |
def __init__(self, module, name="weight", power_iterations=1): | |
super(SpectralNorm, self).__init__() | |
self.module = module | |
self.name = name | |
self.power_iterations = power_iterations | |
if not self._made_params(): | |
self._make_params() | |
def _update_u_v(self): | |
u = getattr(self.module, self.name + "_u") | |
v = getattr(self.module, self.name + "_v") | |
w = getattr(self.module, self.name + "_bar") | |
height = w.data.shape[0] | |
for _ in range(self.power_iterations): | |
v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data)) | |
u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data)) | |
sigma = u.dot(w.view(height, -1).mv(v)) | |
setattr(self.module, self.name, w / sigma.expand_as(w)) | |
def _made_params(self): | |
try: | |
u = getattr(self.module, self.name + "_u") | |
v = getattr(self.module, self.name + "_v") | |
w = getattr(self.module, self.name + "_bar") | |
return True | |
except AttributeError: | |
return False | |
def _make_params(self): | |
w = getattr(self.module, self.name) | |
height = w.data.shape[0] | |
width = w.view(height, -1).data.shape[1] | |
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) | |
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False) | |
u.data = l2normalize(u.data) | |
v.data = l2normalize(v.data) | |
w_bar = Parameter(w.data) | |
del self.module._parameters[self.name] | |
self.module.register_parameter(self.name + "_u", u) | |
self.module.register_parameter(self.name + "_v", v) | |
self.module.register_parameter(self.name + "_bar", w_bar) | |
def forward(self, *args): | |
self._update_u_v() | |
return self.module.forward(*args) | |
class Generator(nn.Module): | |
def __init__(self, z_dim): | |
super(Generator, self).__init__() | |
self.z_dim = z_dim | |
self.model = nn.Sequential( | |
nn.ConvTranspose2d(z_dim, 512, 4, stride=1), | |
nn.InstanceNorm2d(512), | |
nn.ReLU(), | |
nn.ConvTranspose2d(512, 256, 4, stride=2, padding=(1, 1)), | |
nn.InstanceNorm2d(256), | |
nn.ReLU(), | |
nn.ConvTranspose2d(256, 128, 4, stride=2, padding=(1, 1)), | |
nn.InstanceNorm2d(128), | |
nn.ReLU(), | |
nn.ConvTranspose2d(128, 64, 4, stride=2, padding=(1, 1)), | |
nn.InstanceNorm2d(64), | |
nn.ReLU(), | |
nn.ConvTranspose2d(64, channels, 3, stride=1, padding=(1, 1)), | |
nn.Tanh(), | |
) | |
def forward(self, z): | |
return self.model(z.view(-1, self.z_dim, 1, 1)) | |
channels = 3 | |
leak = 0.1 | |
w_g = 4 | |
class Discriminator(nn.Module): | |
def __init__(self): | |
super(Discriminator, self).__init__() | |
self.conv1 = SpectralNorm(nn.Conv2d(channels, 64, 3, stride=1, padding=(1, 1))) | |
self.conv2 = SpectralNorm(nn.Conv2d(64, 64, 4, stride=2, padding=(1, 1))) | |
self.conv3 = SpectralNorm(nn.Conv2d(64, 128, 3, stride=1, padding=(1, 1))) | |
self.conv4 = SpectralNorm(nn.Conv2d(128, 128, 4, stride=2, padding=(1, 1))) | |
self.conv5 = SpectralNorm(nn.Conv2d(128, 256, 3, stride=1, padding=(1, 1))) | |
self.conv6 = SpectralNorm(nn.Conv2d(256, 256, 4, stride=2, padding=(1, 1))) | |
self.conv7 = SpectralNorm(nn.Conv2d(256, 256, 3, stride=1, padding=(1, 1))) | |
self.conv8 = SpectralNorm(nn.Conv2d(256, 512, 4, stride=2, padding=(1, 1))) | |
self.fc = SpectralNorm(nn.Linear(w_g * w_g * 512, 1)) | |
def forward(self, x): | |
m = x | |
m = nn.LeakyReLU(leak)(self.conv1(m)) | |
m = nn.LeakyReLU(leak)(nn.InstanceNorm2d(64)(self.conv2(m))) | |
m = nn.LeakyReLU(leak)(nn.InstanceNorm2d(128)(self.conv3(m))) | |
m = nn.LeakyReLU(leak)(nn.InstanceNorm2d(128)(self.conv4(m))) | |
m = nn.LeakyReLU(leak)(nn.InstanceNorm2d(256)(self.conv5(m))) | |
m = nn.LeakyReLU(leak)(nn.InstanceNorm2d(256)(self.conv6(m))) | |
m = nn.LeakyReLU(leak)(nn.InstanceNorm2d(256)(self.conv7(m))) | |
m = nn.LeakyReLU(leak)(self.conv8(m)) | |
return self.fc(m.view(-1, w_g * w_g * 512)) | |
class Self_Attention(nn.Module): | |
"""Self attention Layer""" | |
def __init__(self, in_dim): | |
super(Self_Attention, self).__init__() | |
self.chanel_in = in_dim | |
self.query_conv = SpectralNorm(nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 1, kernel_size=1)) | |
self.key_conv = SpectralNorm(nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 1, kernel_size=1)) | |
self.value_conv = SpectralNorm(nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)) | |
self.gamma = nn.Parameter(torch.zeros(1)) | |
self.softmax = nn.Softmax(dim=-1) # | |
def forward(self, x): | |
""" | |
inputs : | |
x : input feature maps( B X C X W X H) | |
returns : | |
out : self attention value + input feature | |
attention: B X N X N (N is Width*Height) | |
""" | |
m_batchsize, C, width, height = x.size() | |
proj_query = self.query_conv(x).view(m_batchsize, -1, width * height).permute(0, 2, 1) # B X CX(N) | |
proj_key = self.key_conv(x).view(m_batchsize, -1, width * height) # B X C x (*W*H) | |
energy = torch.bmm(proj_query, proj_key) # transpose check | |
attention = self.softmax(energy) # BX (N) X (N) | |
proj_value = self.value_conv(x).view(m_batchsize, -1, width * height) # B X C X N | |
out = torch.bmm(proj_value, attention.permute(0, 2, 1)) | |
out = out.view(m_batchsize, C, width, height) | |
out = self.gamma * out + x | |
return out | |
class Discriminator_x64_224(nn.Module): | |
""" | |
Discriminative Network | |
""" | |
def __init__(self, in_size=6, ndf=64): | |
super(Discriminator_x64_224, self).__init__() | |
self.in_size = in_size | |
self.ndf = ndf | |
self.layer1 = nn.Sequential(SpectralNorm(nn.Conv2d(self.in_size, self.ndf, 4, 2, 1)), nn.LeakyReLU(0.2, inplace=True)) | |
self.layer2 = nn.Sequential( | |
SpectralNorm(nn.Conv2d(self.ndf, self.ndf, 4, 2, 1)), | |
nn.InstanceNorm2d(self.ndf), | |
nn.LeakyReLU(0.2, inplace=True), | |
) | |
self.attention = Self_Attention(self.ndf) | |
self.layer3 = nn.Sequential( | |
SpectralNorm(nn.Conv2d(self.ndf, self.ndf * 2, 4, 2, 1)), | |
nn.InstanceNorm2d(self.ndf * 2), | |
nn.LeakyReLU(0.2, inplace=True), | |
) | |
self.layer4 = nn.Sequential( | |
SpectralNorm(nn.Conv2d(self.ndf * 2, self.ndf * 4, 4, 2, 1)), | |
nn.InstanceNorm2d(self.ndf * 4), | |
nn.LeakyReLU(0.2, inplace=True), | |
) | |
self.layer5 = nn.Sequential( | |
SpectralNorm(nn.Conv2d(self.ndf * 4, self.ndf * 8, 4, 2, 1)), | |
nn.InstanceNorm2d(self.ndf * 8), | |
nn.LeakyReLU(0.2, inplace=True), | |
) | |
self.layer6 = nn.Sequential( | |
SpectralNorm(nn.Conv2d(self.ndf * 8, self.ndf * 16, 4, 2, 1)), | |
nn.InstanceNorm2d(self.ndf * 16), | |
nn.LeakyReLU(0.2, inplace=True), | |
) | |
self.last = SpectralNorm(nn.Conv2d(self.ndf * 16, 1, [3, 3], 1, 0)) | |
def forward(self, input): | |
feature1 = self.layer1(input) | |
feature2 = self.layer2(feature1) | |
feature_attention = self.attention(feature2) | |
feature3 = self.layer3(feature_attention) | |
feature4 = self.layer4(feature3) | |
feature5 = self.layer5(feature4) | |
feature6 = self.layer6(feature5) | |
output = self.last(feature6) | |
output = F.avg_pool2d(output, output.size()[2:]).view(output.size()[0], -1) | |
return output, feature4 | |