# DCGAN-like generator and discriminator import torch from torch import nn import torch.nn.functional as F from torch.nn import Parameter def l2normalize(v, eps=1e-12): return v / (v.norm() + eps) class SpectralNorm(nn.Module): def __init__(self, module, name="weight", power_iterations=1): super(SpectralNorm, self).__init__() self.module = module self.name = name self.power_iterations = power_iterations if not self._made_params(): self._make_params() def _update_u_v(self): u = getattr(self.module, self.name + "_u") v = getattr(self.module, self.name + "_v") w = getattr(self.module, self.name + "_bar") height = w.data.shape[0] for _ in range(self.power_iterations): v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data)) u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data)) sigma = u.dot(w.view(height, -1).mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _made_params(self): try: u = getattr(self.module, self.name + "_u") v = getattr(self.module, self.name + "_v") w = getattr(self.module, self.name + "_bar") return True except AttributeError: return False def _make_params(self): w = getattr(self.module, self.name) height = w.data.shape[0] width = w.view(height, -1).data.shape[1] u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False) u.data = l2normalize(u.data) v.data = l2normalize(v.data) w_bar = Parameter(w.data) del self.module._parameters[self.name] self.module.register_parameter(self.name + "_u", u) self.module.register_parameter(self.name + "_v", v) self.module.register_parameter(self.name + "_bar", w_bar) def forward(self, *args): self._update_u_v() return self.module.forward(*args) class Generator(nn.Module): def __init__(self, z_dim): super(Generator, self).__init__() self.z_dim = z_dim self.model = nn.Sequential( nn.ConvTranspose2d(z_dim, 512, 4, stride=1), nn.InstanceNorm2d(512), nn.ReLU(), nn.ConvTranspose2d(512, 256, 4, stride=2, padding=(1, 1)), nn.InstanceNorm2d(256), nn.ReLU(), nn.ConvTranspose2d(256, 128, 4, stride=2, padding=(1, 1)), nn.InstanceNorm2d(128), nn.ReLU(), nn.ConvTranspose2d(128, 64, 4, stride=2, padding=(1, 1)), nn.InstanceNorm2d(64), nn.ReLU(), nn.ConvTranspose2d(64, channels, 3, stride=1, padding=(1, 1)), nn.Tanh(), ) def forward(self, z): return self.model(z.view(-1, self.z_dim, 1, 1)) channels = 3 leak = 0.1 w_g = 4 class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() self.conv1 = SpectralNorm(nn.Conv2d(channels, 64, 3, stride=1, padding=(1, 1))) self.conv2 = SpectralNorm(nn.Conv2d(64, 64, 4, stride=2, padding=(1, 1))) self.conv3 = SpectralNorm(nn.Conv2d(64, 128, 3, stride=1, padding=(1, 1))) self.conv4 = SpectralNorm(nn.Conv2d(128, 128, 4, stride=2, padding=(1, 1))) self.conv5 = SpectralNorm(nn.Conv2d(128, 256, 3, stride=1, padding=(1, 1))) self.conv6 = SpectralNorm(nn.Conv2d(256, 256, 4, stride=2, padding=(1, 1))) self.conv7 = SpectralNorm(nn.Conv2d(256, 256, 3, stride=1, padding=(1, 1))) self.conv8 = SpectralNorm(nn.Conv2d(256, 512, 4, stride=2, padding=(1, 1))) self.fc = SpectralNorm(nn.Linear(w_g * w_g * 512, 1)) def forward(self, x): m = x m = nn.LeakyReLU(leak)(self.conv1(m)) m = nn.LeakyReLU(leak)(nn.InstanceNorm2d(64)(self.conv2(m))) m = nn.LeakyReLU(leak)(nn.InstanceNorm2d(128)(self.conv3(m))) m = nn.LeakyReLU(leak)(nn.InstanceNorm2d(128)(self.conv4(m))) m = nn.LeakyReLU(leak)(nn.InstanceNorm2d(256)(self.conv5(m))) m = nn.LeakyReLU(leak)(nn.InstanceNorm2d(256)(self.conv6(m))) m = nn.LeakyReLU(leak)(nn.InstanceNorm2d(256)(self.conv7(m))) m = nn.LeakyReLU(leak)(self.conv8(m)) return self.fc(m.view(-1, w_g * w_g * 512)) class Self_Attention(nn.Module): """Self attention Layer""" def __init__(self, in_dim): super(Self_Attention, self).__init__() self.chanel_in = in_dim self.query_conv = SpectralNorm(nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 1, kernel_size=1)) self.key_conv = SpectralNorm(nn.Conv2d(in_channels=in_dim, out_channels=in_dim // 1, kernel_size=1)) self.value_conv = SpectralNorm(nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1)) self.gamma = nn.Parameter(torch.zeros(1)) self.softmax = nn.Softmax(dim=-1) # def forward(self, x): """ inputs : x : input feature maps( B X C X W X H) returns : out : self attention value + input feature attention: B X N X N (N is Width*Height) """ m_batchsize, C, width, height = x.size() proj_query = self.query_conv(x).view(m_batchsize, -1, width * height).permute(0, 2, 1) # B X CX(N) proj_key = self.key_conv(x).view(m_batchsize, -1, width * height) # B X C x (*W*H) energy = torch.bmm(proj_query, proj_key) # transpose check attention = self.softmax(energy) # BX (N) X (N) proj_value = self.value_conv(x).view(m_batchsize, -1, width * height) # B X C X N out = torch.bmm(proj_value, attention.permute(0, 2, 1)) out = out.view(m_batchsize, C, width, height) out = self.gamma * out + x return out class Discriminator_x64_224(nn.Module): """ Discriminative Network """ def __init__(self, in_size=6, ndf=64): super(Discriminator_x64_224, self).__init__() self.in_size = in_size self.ndf = ndf self.layer1 = nn.Sequential(SpectralNorm(nn.Conv2d(self.in_size, self.ndf, 4, 2, 1)), nn.LeakyReLU(0.2, inplace=True)) self.layer2 = nn.Sequential( SpectralNorm(nn.Conv2d(self.ndf, self.ndf, 4, 2, 1)), nn.InstanceNorm2d(self.ndf), nn.LeakyReLU(0.2, inplace=True), ) self.attention = Self_Attention(self.ndf) self.layer3 = nn.Sequential( SpectralNorm(nn.Conv2d(self.ndf, self.ndf * 2, 4, 2, 1)), nn.InstanceNorm2d(self.ndf * 2), nn.LeakyReLU(0.2, inplace=True), ) self.layer4 = nn.Sequential( SpectralNorm(nn.Conv2d(self.ndf * 2, self.ndf * 4, 4, 2, 1)), nn.InstanceNorm2d(self.ndf * 4), nn.LeakyReLU(0.2, inplace=True), ) self.layer5 = nn.Sequential( SpectralNorm(nn.Conv2d(self.ndf * 4, self.ndf * 8, 4, 2, 1)), nn.InstanceNorm2d(self.ndf * 8), nn.LeakyReLU(0.2, inplace=True), ) self.layer6 = nn.Sequential( SpectralNorm(nn.Conv2d(self.ndf * 8, self.ndf * 16, 4, 2, 1)), nn.InstanceNorm2d(self.ndf * 16), nn.LeakyReLU(0.2, inplace=True), ) self.last = SpectralNorm(nn.Conv2d(self.ndf * 16, 1, [3, 3], 1, 0)) def forward(self, input): feature1 = self.layer1(input) feature2 = self.layer2(feature1) feature_attention = self.attention(feature2) feature3 = self.layer3(feature_attention) feature4 = self.layer4(feature3) feature5 = self.layer5(feature4) feature6 = self.layer6(feature5) output = self.last(feature6) output = F.avg_pool2d(output, output.size()[2:]).view(output.size()[0], -1) return output, feature4