File size: 5,939 Bytes
6a3a328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1ca56d
6a3a328
 
 
 
c1ca56d
 
 
 
09016b9
c1ca56d
09016b9
 
 
 
 
c1ca56d
 
6a3a328
 
 
 
09016b9
6a3a328
 
 
09016b9
 
 
 
6a3a328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1ca56d
6a3a328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
-------------------------------------------------
   @File Name:     utils.py
   @Author:        Luyao.zhang
   @Date:          2023/5/16
   @Description:
-------------------------------------------------
"""
from ultralytics import YOLO
import streamlit as st
import cv2
from PIL import Image
import tempfile


def _display_detected_frames(conf, model, st_frame, image):
    """
    Display the detected objects on a video frame using the YOLOv8 model.
    :param conf (float): Confidence threshold for object detection.
    :param model (YOLOv8): An instance of the `YOLOv8` class containing the YOLOv8 model.
    :param st_frame (Streamlit object): A Streamlit object to display the detected video.
    :param image (numpy array): A numpy array representing the video frame.
    :return: None
    """
    # Resize the image to a standard size
    image = cv2.resize(image, (720, int(720 * (9 / 16))))

    # Predict the objects in the image using YOLOv8 model
    res = model.predict(image, conf=conf)

    # Plot the detected objects on the video frame
    res_plotted = res[0].plot()
    st_frame.image(res_plotted,
                   caption='Detected Video',
                   channels="BGR",
                   use_column_width=True
                   )


@st.cache_resource
def load_model(model_path):
    """
    Loads a YOLO object detection model from the specified model_path.

    Parameters:
        model_path (str): The path to the YOLO model file.

    Returns:
        A YOLO object detection model.
    """
    model = YOLO(model_path)
    return model


def infer_uploaded_image(conf, model):
    """
    Execute inference for uploaded image
    :param conf: Confidence of YOLOv8 model
    :param model: An instance of the `YOLOv8` class containing the YOLOv8 model.
    :return: None
    """
    source_img = st.sidebar.file_uploader(
        label="Choose an image...",
        type=("jpg", "jpeg", "png", 'bmp', 'webp')
    )

    col1, col2 = st.columns(2)

    with col1:
        if source_img:
            uploaded_image = Image.open(source_img)
            # adding the uploaded image to the page with caption
            st.image(
                image=source_img,
                caption="Uploaded Image",
                use_column_width=True
            )

    if source_img:
        if st.button("Detect"):
            with st.spinner("Running..."):
                res = model.predict(uploaded_image,
                                    conf=conf)
                boxes = res[0].boxes
                dclasses = boxes.cls.numpy(force=True)
                names = res[0].names

                dnames = []
                ndetected = {}
                for cid in dclasses:
                    if names[cid] in ndetected:
                        count = ndetected[names[cid]]
                    else:
                        count = 0
                    ndetected.update( {names[cid]:count+1} )
                    dnames.append(names[cid])

                res_plotted = res[0].plot()[:, :, ::-1]

                with col2:
                    st.image(res_plotted,
                             caption="{} classes detected".format(len(dnames)),
                             use_column_width=True)
                    try:
                        with st.expander("Detection Results"):
                            #for box in boxes:
                            #    st.write(box.xywh)
                            for cname in ndetected:
                                st.write("{} x{}".format(cname, ndetected[cname]))
                    except Exception as ex:
                        st.write("No image is uploaded yet!")
                        st.write(ex)


def infer_uploaded_video(conf, model):
    """
    Execute inference for uploaded video
    :param conf: Confidence of YOLOv8 model
    :param model: An instance of the `YOLOv8` class containing the YOLOv8 model.
    :return: None
    """
    source_video = st.sidebar.file_uploader(
        label="Choose a video..."
    )

    if source_video:
        st.video(source_video)

    if source_video:
        if st.button("Detect"):
            with st.spinner("Running..."):
                try:
                    tfile = tempfile.NamedTemporaryFile()
                    tfile.write(source_video.read())
                    vid_cap = cv2.VideoCapture(
                        tfile.name)
                    st_frame = st.empty()
                    while (vid_cap.isOpened()):
                        success, image = vid_cap.read()
                        if success:
                            _display_detected_frames(conf,
                                                     model,
                                                     st_frame,
                                                     image
                                                     )
                        else:
                            vid_cap.release()
                            break
                except Exception as e:
                    st.error(f"Error loading video: {e}")


def infer_uploaded_webcam(conf, model):
    """
    Execute inference for webcam.
    :param conf: Confidence of YOLOv8 model
    :param model: An instance of the `YOLOv8` class containing the YOLOv8 model.
    :return: None
    """
    try:
        flag = st.button(
            label="Stop running"
        )
        vid_cap = cv2.VideoCapture(0)  # local camera
        st_frame = st.empty()
        while not flag:
            success, image = vid_cap.read()
            if success:
                _display_detected_frames(
                    conf,
                    model,
                    st_frame,
                    image
                )
            else:
                vid_cap.release()
                break
    except Exception as e:
        st.error(f"Error loading video: {str(e)}")