Spaces:
Sleeping
Sleeping
File size: 2,173 Bytes
c9bf118 a618fc8 c9bf118 a618fc8 c9bf118 a618fc8 c9bf118 a618fc8 c9bf118 a618fc8 c9bf118 a618fc8 c9bf118 a618fc8 c9bf118 a618fc8 c9bf118 a618fc8 c9bf118 a618fc8 c9bf118 a618fc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
title: FoodNet
emoji: π
colorFrom: purple
colorTo: purple
sdk: streamlit
app_file: foodnet.py
---
# 24-679 FoodNet Project
## Authors
David Chuan-En Lin: [email protected]
Mitch Fogelson: [email protected]
Sunny Yang: [email protected]
Shihao Xu: [email protected]
## TODO
### Must Have
1. Cooking method (How to do this?) (TBD)
2. Ingredients -> Recipe (Recipe Querey?) (Mitch)
3. Cuisine Meta Data (Where to get) (TBD)
4. Deployment on the cloud -> (David)
### Like to have
1. Images related ->
* [Google Image Search API](https://pypi.org/project/Google-Images-Search/)
* [OpenAI Clip](https://openai.com/api/)
2. User Studies
### Moonshot
1. Recipe Masking Prediction
2.
## Description
We wanted to help students and households in the Pittsburgh to reduce their food waste. We developed a model that suggests recipes based on current leftovers availible.
* Model -> Facebook's [FastText](https://radimrehurek.com/gensim/models/fasttext.html)
* Dataset -> [Simplified 1M+ Recipes](https://github.com/schmidtdominik/RecipeNet)
* [Dominick Schmidt Blog](https://dominikschmidt.xyz/simplified-recipes-1M/#dataset-sources)
## Try WebApp
https://huggingface.co/spaces/chuanenlin/foodnet
## Quick Start
1. Clone repository
```
git clone [email protected]:chuanenlin/foodnet.git
```
2. Move into repository
```
cd foodnet
```
(**Optional** Create conda environment)
3. Install gdown
```
pip install gdown
```
4. Download models
```
gdown https://drive.google.com/drive/folders/1LlQpd45E71dSfC8FgvIhJjQjqxnlBC9j -O ./models --folder
```
5. Download datasets (Optional)
```
gdown https://drive.google.com/drive/folders/18aA3BFKqzkqNz5L4N5vN6bFnp8Ch2CQV -O ./data --folder
```
6. Install Dependencies
```
pip install -r requirements.txt
```
7. Run code
```
streamlit run foodnet.py
```
## Args
Train new model
```
streamlit run foodnet.py -d/--dataset ['/PATH/TO/DATASET'] -t/--train True
```
Load alternative model
```
streamlit run foodnet.py --model ['/PATH/TO/MODEL']
```
## Requirements
* python>=3.6
* gensim>=4.0.x
* streamlit
* gdown
* nltk
* pickle
* matplotlib
## References
TODO
|