Spaces:
Sleeping
Sleeping
David Chuan-En Lin
commited on
Commit
·
6f540cc
1
Parent(s):
25dd820
add models
Browse files- .DS_Store +0 -0
- .gitattributes +2 -0
- fastfood.pth +3 -0
- fastfood.pth.wv.vectors_ngrams.npy +3 -0
- foodnet.py +4 -4
.DS_Store
DELETED
Binary file (6.15 kB)
|
|
.gitattributes
CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
fastfood.pth.wv.vectors_ngrams.npy filter=lfs diff=lfs merge=lfs -text
|
29 |
+
fastfood.pth filter=lfs diff=lfs merge=lfs -text
|
fastfood.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e170fef96d7d064f558fc27cd74d08c4ead05d2a31456bd3808f7d6f20df66f9
|
3 |
+
size 1025251
|
fastfood.pth.wv.vectors_ngrams.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f880edd2056aec8873f205736f308eebd4a3c33df7225d021c753e1d0f723cf
|
3 |
+
size 256000128
|
foodnet.py
CHANGED
@@ -36,7 +36,7 @@ def recommend_ingredients(yum, leftovers, n=10):
|
|
36 |
:returns
|
37 |
output -> top_n recommendations
|
38 |
'''
|
39 |
-
leftovers_embedding_sum = np.zeros([
|
40 |
for ingredient in leftovers:
|
41 |
# pdb.set_trace()
|
42 |
ingredient_embedding = yum.get_vector(ingredient, norm=True)
|
@@ -88,7 +88,7 @@ def recommend_ingredients_subsets(model, yum,leftovers, subset_size):
|
|
88 |
'''
|
89 |
all_outputs = {}
|
90 |
for leftovers_subset in itertools.combinations(leftovers, subset_size):
|
91 |
-
leftovers_embedding_sum = np.
|
92 |
for ingredient in leftovers_subset:
|
93 |
ingredient_embedding = yum.word_vec(ingredient, use_norm=True)
|
94 |
leftovers_embedding_sum += ingredient_embedding
|
@@ -252,8 +252,8 @@ if __name__ == "__main__":
|
|
252 |
# # model_path = input("Model filename and directory [eg. models/new_model.model]: ")
|
253 |
# # model.save(model_path)
|
254 |
# else:
|
255 |
-
gdown.download('https://drive.google.com/uc?id=1fXGsWEbr-1BftKtOsnxc61cM3akMAIC0', 'fastfood.pth')
|
256 |
-
gdown.download('https://drive.google.com/uc?id=1h_TijdSw1K9RT3dnlfIg4xtl8WPNNQmn', 'fastfood.pth.wv.vectors_ngrams.npy')
|
257 |
model, yum = load_model('fastfood.pth')
|
258 |
|
259 |
|
|
|
36 |
:returns
|
37 |
output -> top_n recommendations
|
38 |
'''
|
39 |
+
leftovers_embedding_sum = np.zeros([32,])
|
40 |
for ingredient in leftovers:
|
41 |
# pdb.set_trace()
|
42 |
ingredient_embedding = yum.get_vector(ingredient, norm=True)
|
|
|
88 |
'''
|
89 |
all_outputs = {}
|
90 |
for leftovers_subset in itertools.combinations(leftovers, subset_size):
|
91 |
+
leftovers_embedding_sum = np.zeros([32,])
|
92 |
for ingredient in leftovers_subset:
|
93 |
ingredient_embedding = yum.word_vec(ingredient, use_norm=True)
|
94 |
leftovers_embedding_sum += ingredient_embedding
|
|
|
252 |
# # model_path = input("Model filename and directory [eg. models/new_model.model]: ")
|
253 |
# # model.save(model_path)
|
254 |
# else:
|
255 |
+
# gdown.download('https://drive.google.com/uc?id=1fXGsWEbr-1BftKtOsnxc61cM3akMAIC0', 'fastfood.pth')
|
256 |
+
# gdown.download('https://drive.google.com/uc?id=1h_TijdSw1K9RT3dnlfIg4xtl8WPNNQmn', 'fastfood.pth.wv.vectors_ngrams.npy')
|
257 |
model, yum = load_model('fastfood.pth')
|
258 |
|
259 |
|