File size: 13,453 Bytes
a9cbf7c
 
 
 
 
 
 
 
 
83c81a5
 
 
 
 
 
 
 
 
 
 
 
a9cbf7c
 
83c81a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9cbf7c
 
83c81a5
 
 
 
 
 
 
 
 
 
 
 
 
a9cbf7c
83c81a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9cbf7c
83c81a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9cbf7c
83c81a5
 
 
 
 
 
 
 
 
 
 
 
a9cbf7c
 
83c81a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9cbf7c
 
83c81a5
 
 
 
 
 
 
 
 
 
a9cbf7c
83c81a5
 
 
 
 
a9cbf7c
83c81a5
 
a9cbf7c
83c81a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9cbf7c
83c81a5
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import streamlit as st
from pytube import YouTube
from pytube import extract
import cv2
from PIL import Image
import clip as openai_clip
import torch
import math
from humanfriendly import format_timespan
from moviepy.video.io.VideoFileClip import VideoFileClip
import numpy as np
import time
import os
import yt_dlp
import io

EXAMPLE_URL = "https://www.youtube.com/watch?v=zTvJJnoWIPk"
CACHED_DATA_PATH = "cached_data/"

device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = openai_clip.load("ViT-B/32", device=device)

def fetch_video(url):
    try:
        ydl_opts = {
            'format': 'bestvideo[height<=360][ext=mp4]',
            'quiet': True,
            'no_warnings': True
        }
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            info = ydl.extract_info(url, download=False)
            duration = info.get('duration', 0)
            if duration >= 300:  # 5 minutes
                st.error("Please find a YouTube video shorter than 5 minutes.")
                st.stop()
            video_url = info['url']
            return None, video_url
            
    except Exception as e:
        st.error(f"Error fetching video: {str(e)}")
        st.error("Try another YouTube video or check if the URL is correct.")
        st.stop()

def extract_frames(video, status_text, progress_bar):
    cap = cv2.VideoCapture(video)
    frames = []
    fps = cap.get(cv2.CAP_PROP_FPS)
    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    step = max(1, round(fps/2))
    total_frames = frame_count // step
    frame_indices = []
    for i in range(0, frame_count, step):
        cap.set(cv2.CAP_PROP_POS_FRAMES, i)
        ret, frame = cap.read()
        if ret:
            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frames.append(Image.fromarray(frame_rgb))
            frame_indices.append(i)
            
            current_frame = len(frames)
            status_text.text(f'Extracting frames... ({min(current_frame, total_frames)}/{total_frames})')
            progress = min(current_frame / total_frames, 1.0)
            progress_bar.progress(progress)
    
    cap.release()
    return frames, fps, frame_indices

def encode_frames(video_frames, status_text):
    batch_size = 256
    batches = math.ceil(len(video_frames) / batch_size)
    video_features = torch.empty([0, 512], dtype=torch.float32).to(device)
    
    for i in range(batches):
        batch_frames = video_frames[i*batch_size : (i+1)*batch_size]
        batch_preprocessed = torch.stack([preprocess(frame) for frame in batch_frames]).to(device)
        with torch.no_grad():
            batch_features = model.encode_image(batch_preprocessed)
            batch_features = batch_features.float()
            batch_features /= batch_features.norm(dim=-1, keepdim=True)
        video_features = torch.cat((video_features, batch_features))
        status_text.text(f'Encoding frames... ({(i+1)*batch_size}/{len(video_frames)})')
    
    return video_features

def img_to_bytes(img):
    img_byte_arr = io.BytesIO()
    img.save(img_byte_arr, format='JPEG')
    img_byte_arr = img_byte_arr.getvalue()
    return img_byte_arr

def get_youtube_timestamp_url(url, frame_idx, frame_indices):
    frame_count = frame_indices[frame_idx]
    fps = st.session_state.fps
    seconds = frame_count / fps
    seconds_rounded = int(seconds)
    
    if url == EXAMPLE_URL:
        video_id = "zTvJJnoWIPk"
    else:
        try:
            from urllib.parse import urlparse, parse_qs
            parsed_url = urlparse(url)
            video_id = parse_qs(parsed_url.query)['v'][0]
        except:
            return None, None
    
    return f"https://youtu.be/{video_id}?t={seconds_rounded}", seconds

def display_results(best_photo_idx, video_frames):
    st.subheader("Top 10 Results")
    for frame_id in best_photo_idx:
        result = video_frames[frame_id]
        st.image(result, width=400)
        
        timestamp_url, seconds = get_youtube_timestamp_url(st.session_state.url, frame_id, st.session_state.frame_indices)
        if timestamp_url:
            st.markdown(f"[▢️ Play video at {format_timespan(int(seconds))}]({timestamp_url})")

def text_search(search_query, video_features, video_frames, display_results_count=10):
    display_results_count = min(display_results_count, len(video_frames))
    
    with torch.no_grad():
        text_tokens = openai_clip.tokenize(search_query).to(device)
        text_features = model.encode_text(text_tokens)
        text_features = text_features.float()
        text_features /= text_features.norm(dim=-1, keepdim=True)
    
    video_features = video_features.float()
    
    similarities = (100.0 * video_features @ text_features.T)
    values, best_photo_idx = similarities.topk(display_results_count, dim=0)
    display_results(best_photo_idx, video_frames)

def image_search(query_image, video_features, video_frames, display_results_count=10):
    query_image = preprocess(query_image).unsqueeze(0).to(device)
    
    with torch.no_grad():
        image_features = model.encode_image(query_image)
        image_features = image_features.float()
        image_features /= image_features.norm(dim=-1, keepdim=True)
    
    video_features = video_features.float()
    
    similarities = (100.0 * video_features @ image_features.T)
    values, best_photo_idx = similarities.topk(display_results_count, dim=0)
    display_results(best_photo_idx, video_frames)

def text_and_image_search(search_query, query_image, video_features, video_frames, display_results_count=10):
    with torch.no_grad():
        text_tokens = openai_clip.tokenize(search_query).to(device)
        text_features = model.encode_text(text_tokens)
        text_features = text_features.float()
        text_features /= text_features.norm(dim=-1, keepdim=True)
    
    query_image = preprocess(query_image).unsqueeze(0).to(device)
    with torch.no_grad():
        image_features = model.encode_image(query_image)
        image_features = image_features.float()
        image_features /= image_features.norm(dim=-1, keepdim=True)
    
    combined_features = (text_features + image_features) / 2
    
    video_features = video_features.float()
    similarities = (100.0 * video_features @ combined_features.T)
    values, best_photo_idx = similarities.topk(display_results_count, dim=0)
    display_results(best_photo_idx, video_frames)

def load_cached_data(url):
    if url == EXAMPLE_URL:
        try:
            video_frames = np.load(f"{CACHED_DATA_PATH}example_frames.npy", allow_pickle=True)
            video_features = torch.load(f"{CACHED_DATA_PATH}example_features.pt")
            fps = np.load(f"{CACHED_DATA_PATH}example_fps.npy")
            frame_indices = np.load(f"{CACHED_DATA_PATH}example_frame_indices.npy")
            return video_frames, video_features, fps, frame_indices
        except:
            return None, None, None, None
    return None, None, None, None

def save_cached_data(url, video_frames, video_features, fps, frame_indices):
    if url == EXAMPLE_URL:
        os.makedirs(CACHED_DATA_PATH, exist_ok=True)
        np.save(f"{CACHED_DATA_PATH}example_frames.npy", video_frames)
        torch.save(video_features, f"{CACHED_DATA_PATH}example_features.pt")
        np.save(f"{CACHED_DATA_PATH}example_fps.npy", fps)
        np.save(f"{CACHED_DATA_PATH}example_frame_indices.npy", frame_indices)

def clear_cached_data():
    if os.path.exists(CACHED_DATA_PATH):
        try:
            for file in os.listdir(CACHED_DATA_PATH):
                file_path = os.path.join(CACHED_DATA_PATH, file)
                if os.path.isfile(file_path):
                    os.unlink(file_path)
            os.rmdir(CACHED_DATA_PATH)
        except Exception as e:
            print(f"Error clearing cache: {e}")

st.set_page_config(page_title="Which Frame? πŸŽžοΈπŸ”", page_icon = "πŸ”", layout = "centered", initial_sidebar_state = "collapsed")

hide_streamlit_style = """
<style>
/* Hide Streamlit elements */
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
* {
    font-family: Avenir;
}
.block-container {
    max-width: 800px;
    padding: 2rem 1rem;
}
.stTextInput input {
    border-radius: 8px;
    border: 1px solid #E0E0E0;
    padding: 0.75rem;
    font-size: 1rem;
}
.stRadio [role="radiogroup"] {
    background: #F8F8F8;
    padding: 1rem;
    border-radius: 12px;
}
h1 {text-align: center;}
.css-gma2qf {display: flex; justify-content: center; font-size: 36px; font-weight: bold;}
a:link {text-decoration: none;}
a:hover {text-decoration: none;}
.st-ba {font-family: Avenir;}
.st-button {text-align: center;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)

if 'progress' not in st.session_state:
    st.session_state.progress = 1
if 'video_frames' not in st.session_state:
    st.session_state.video_frames = None
if 'video_features' not in st.session_state:
    st.session_state.video_features = None
if 'fps' not in st.session_state:
    st.session_state.fps = None
if 'video_name' not in st.session_state:
    st.session_state.video_name = 'videos/example.mp4'

st.title("Which Frame? πŸŽžοΈπŸ”")
st.markdown("""
Search a video semantically. For example, which frame has "a person with sunglasses"?
Search using text, images, or a mix of text + image. WhichFrame uses [CLIP](https://github.com/openai/CLIP) for zero-shot frame classification.
""")

if 'url' not in st.session_state:
    st.session_state.url = ''

url = st.text_input("Enter a YouTube URL (e.g., https://www.youtube.com/watch?v=zTvJJnoWIPk)", key="url_input")

if st.button("Process Video"):
    if not url:
        st.error("Please enter a YouTube URL first")
    else:
        try:
            cached_frames, cached_features, cached_fps, cached_frame_indices = load_cached_data(url)
            
            if cached_frames is not None:
                st.session_state.video_frames = cached_frames
                st.session_state.video_features = cached_features
                st.session_state.fps = cached_fps
                st.session_state.frame_indices = cached_frame_indices
                st.session_state.url = url
                st.session_state.progress = 2
                st.success("Loaded cached video data!")
            else:
                with st.spinner('Fetching video...'):
                    video, video_url = fetch_video(url)
                    st.session_state.url = url
                
                progress_bar = st.progress(0)
                status_text = st.empty()
                
                # Extract frames
                st.session_state.video_frames, st.session_state.fps, st.session_state.frame_indices = extract_frames(video_url, status_text, progress_bar)
                
                # Encode frames
                st.session_state.video_features = encode_frames(st.session_state.video_frames, status_text)
                
                save_cached_data(url, st.session_state.video_frames, st.session_state.video_features, st.session_state.fps, st.session_state.frame_indices)
                status_text.text('Finalizing...')
                st.session_state.progress = 2
                progress_bar.progress(100)
                status_text.empty()
                progress_bar.empty()
                st.success("Video processed successfully!")
                
        except Exception as e:
            st.error(f"Error processing video: {str(e)}")

if st.session_state.progress == 2:
    search_type = st.radio("Search Method", ["Text Search", "Image Search", "Text + Image Search"], index=0)
    
    if search_type == "Text Search":  # Text Search
        text_query = st.text_input("Type a search query (e.g., 'red car' or 'person with sunglasses')")
        if st.button("Search"):
            if not text_query:
                st.error("Please enter a search query first")
            else:
                text_search(text_query, st.session_state.video_features, st.session_state.video_frames)
    elif search_type == "Image Search":  # Image Search
        uploaded_file = st.file_uploader("Upload a query image", type=['png', 'jpg', 'jpeg'])
        if uploaded_file is not None:
            query_image = Image.open(uploaded_file).convert('RGB')
            st.image(query_image, caption="Query Image", width=200)
        if st.button("Search"):
            if uploaded_file is None:
                st.error("Please upload an image first")
            else:
                image_search(query_image, st.session_state.video_features, st.session_state.video_frames)
    else:  # Text + Image Search
        text_query = st.text_input("Type a search query")
        uploaded_file = st.file_uploader("Upload a query image", type=['png', 'jpg', 'jpeg'])
        if uploaded_file is not None:
            query_image = Image.open(uploaded_file).convert('RGB')
            st.image(query_image, caption="Query Image", width=200)
        
        if st.button("Search"):
            if not text_query or uploaded_file is None:
                st.error("Please provide both text query and image")
            else:
                text_and_image_search(text_query, query_image, st.session_state.video_features, st.session_state.video_frames)

st.markdown("---")
st.markdown(
    "By [David Chuan-En Lin](https://chuanenlin.com/). "
    "Play with the code at [https://github.com/chuanenlin/whichframe](https://github.com/chuanenlin/whichframe)."
)