File size: 11,999 Bytes
a9cbf7c
 
 
 
 
 
 
83c81a5
 
 
 
 
 
 
 
 
 
 
a9cbf7c
 
df75121
 
 
 
83c81a5
 
f36363b
83c81a5
1a29f57
655df7a
 
83c81a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9cbf7c
 
83c81a5
 
 
 
 
 
 
 
 
 
 
 
 
a9cbf7c
83c81a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9cbf7c
83c81a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9cbf7c
83c81a5
 
 
 
 
 
 
 
 
 
 
 
a9cbf7c
 
83c81a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9cbf7c
 
df75121
 
 
83c81a5
 
 
df75121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9cbf7c
83c81a5
 
 
 
 
a9cbf7c
df75121
 
83c81a5
df75121
83c81a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9cbf7c
83c81a5
 
 
 
4f0ffc1
83c81a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import streamlit as st
import cv2
from PIL import Image
import clip as openai_clip
import torch
import math
from humanfriendly import format_timespan
import numpy as np
import time
import os
import yt_dlp
import io

EXAMPLE_URL = "https://www.youtube.com/watch?v=zTvJJnoWIPk"
CACHED_DATA_PATH = "cached_data/"

device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = openai_clip.load("ViT-B/32", device=device)

def fetch_video(url):
    if url != EXAMPLE_URL:
        st.error("Only the example video is supported due to compute constraints.")
        st.stop()
        
    try:
        ydl_opts = {
            'format': 'bestvideo[height<=360][ext=mp4]/best[height<=360]',
            'quiet': True,
            'no_warnings': True,
            'extract_flat': False,
            'no_check_certificates': True
        }
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            info = ydl.extract_info(url, download=False)
            video_url = info['url']
            return None, video_url
            
    except Exception as e:
        st.error(f"Error fetching video: {str(e)}")
        st.stop()

def extract_frames(video, status_text, progress_bar):
    cap = cv2.VideoCapture(video)
    frames = []
    fps = cap.get(cv2.CAP_PROP_FPS)
    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    step = max(1, round(fps/2))
    total_frames = frame_count // step
    frame_indices = []
    for i in range(0, frame_count, step):
        cap.set(cv2.CAP_PROP_POS_FRAMES, i)
        ret, frame = cap.read()
        if ret:
            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            frames.append(Image.fromarray(frame_rgb))
            frame_indices.append(i)
            
            current_frame = len(frames)
            status_text.text(f'Extracting frames... ({min(current_frame, total_frames)}/{total_frames})')
            progress = min(current_frame / total_frames, 1.0)
            progress_bar.progress(progress)
    
    cap.release()
    return frames, fps, frame_indices

def encode_frames(video_frames, status_text):
    batch_size = 256
    batches = math.ceil(len(video_frames) / batch_size)
    video_features = torch.empty([0, 512], dtype=torch.float32).to(device)
    
    for i in range(batches):
        batch_frames = video_frames[i*batch_size : (i+1)*batch_size]
        batch_preprocessed = torch.stack([preprocess(frame) for frame in batch_frames]).to(device)
        with torch.no_grad():
            batch_features = model.encode_image(batch_preprocessed)
            batch_features = batch_features.float()
            batch_features /= batch_features.norm(dim=-1, keepdim=True)
        video_features = torch.cat((video_features, batch_features))
        status_text.text(f'Encoding frames... ({(i+1)*batch_size}/{len(video_frames)})')
    
    return video_features

def img_to_bytes(img):
    img_byte_arr = io.BytesIO()
    img.save(img_byte_arr, format='JPEG')
    img_byte_arr = img_byte_arr.getvalue()
    return img_byte_arr

def get_youtube_timestamp_url(url, frame_idx, frame_indices):
    frame_count = frame_indices[frame_idx]
    fps = st.session_state.fps
    seconds = frame_count / fps
    seconds_rounded = int(seconds)
    
    if url == EXAMPLE_URL:
        video_id = "zTvJJnoWIPk"
    else:
        try:
            from urllib.parse import urlparse, parse_qs
            parsed_url = urlparse(url)
            video_id = parse_qs(parsed_url.query)['v'][0]
        except:
            return None, None
    
    return f"https://youtu.be/{video_id}?t={seconds_rounded}", seconds

def display_results(best_photo_idx, video_frames):
    st.subheader("Top 10 Results")
    for frame_id in best_photo_idx:
        result = video_frames[frame_id]
        st.image(result, width=400)
        
        timestamp_url, seconds = get_youtube_timestamp_url(st.session_state.url, frame_id, st.session_state.frame_indices)
        if timestamp_url:
            st.markdown(f"[▢️ Play video at {format_timespan(int(seconds))}]({timestamp_url})")

def text_search(search_query, video_features, video_frames, display_results_count=10):
    display_results_count = min(display_results_count, len(video_frames))
    
    with torch.no_grad():
        text_tokens = openai_clip.tokenize(search_query).to(device)
        text_features = model.encode_text(text_tokens)
        text_features = text_features.float()
        text_features /= text_features.norm(dim=-1, keepdim=True)
    
    video_features = video_features.float()
    
    similarities = (100.0 * video_features @ text_features.T)
    values, best_photo_idx = similarities.topk(display_results_count, dim=0)
    display_results(best_photo_idx, video_frames)

def image_search(query_image, video_features, video_frames, display_results_count=10):
    query_image = preprocess(query_image).unsqueeze(0).to(device)
    
    with torch.no_grad():
        image_features = model.encode_image(query_image)
        image_features = image_features.float()
        image_features /= image_features.norm(dim=-1, keepdim=True)
    
    video_features = video_features.float()
    
    similarities = (100.0 * video_features @ image_features.T)
    values, best_photo_idx = similarities.topk(display_results_count, dim=0)
    display_results(best_photo_idx, video_frames)

def text_and_image_search(search_query, query_image, video_features, video_frames, display_results_count=10):
    with torch.no_grad():
        text_tokens = openai_clip.tokenize(search_query).to(device)
        text_features = model.encode_text(text_tokens)
        text_features = text_features.float()
        text_features /= text_features.norm(dim=-1, keepdim=True)
    
    query_image = preprocess(query_image).unsqueeze(0).to(device)
    with torch.no_grad():
        image_features = model.encode_image(query_image)
        image_features = image_features.float()
        image_features /= image_features.norm(dim=-1, keepdim=True)
    
    combined_features = (text_features + image_features) / 2
    
    video_features = video_features.float()
    similarities = (100.0 * video_features @ combined_features.T)
    values, best_photo_idx = similarities.topk(display_results_count, dim=0)
    display_results(best_photo_idx, video_frames)

def load_cached_data(url):
    if url == EXAMPLE_URL:
        try:
            video_frames = np.load(f"{CACHED_DATA_PATH}example_frames.npy", allow_pickle=True)
            video_features = torch.load(f"{CACHED_DATA_PATH}example_features.pt")
            fps = np.load(f"{CACHED_DATA_PATH}example_fps.npy")
            frame_indices = np.load(f"{CACHED_DATA_PATH}example_frame_indices.npy")
            return video_frames, video_features, fps, frame_indices
        except:
            return None, None, None, None
    return None, None, None, None

def save_cached_data(url, video_frames, video_features, fps, frame_indices):
    if url == EXAMPLE_URL:
        os.makedirs(CACHED_DATA_PATH, exist_ok=True)
        np.save(f"{CACHED_DATA_PATH}example_frames.npy", video_frames)
        torch.save(video_features, f"{CACHED_DATA_PATH}example_features.pt")
        np.save(f"{CACHED_DATA_PATH}example_fps.npy", fps)
        np.save(f"{CACHED_DATA_PATH}example_frame_indices.npy", frame_indices)

def clear_cached_data():
    if os.path.exists(CACHED_DATA_PATH):
        try:
            for file in os.listdir(CACHED_DATA_PATH):
                file_path = os.path.join(CACHED_DATA_PATH, file)
                if os.path.isfile(file_path):
                    os.unlink(file_path)
            os.rmdir(CACHED_DATA_PATH)
        except Exception as e:
            print(f"Error clearing cache: {e}")

st.set_page_config(page_title="Which Frame? πŸŽžοΈπŸ”", page_icon = "πŸ”", layout = "centered", initial_sidebar_state = "collapsed")

hide_streamlit_style = """
<style>
/* Hide Streamlit elements */
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
* {
    font-family: Avenir;
}
.block-container {
    max-width: 800px;
    padding: 2rem 1rem;
}
.stTextInput input {
    border-radius: 8px;
    border: 1px solid #E0E0E0;
    padding: 0.75rem;
    font-size: 1rem;
}
.stRadio [role="radiogroup"] {
    background: #F8F8F8;
    padding: 1rem;
    border-radius: 12px;
}
h1 {text-align: center;}
.css-gma2qf {display: flex; justify-content: center; font-size: 36px; font-weight: bold;}
a:link {text-decoration: none;}
a:hover {text-decoration: none;}
.st-ba {font-family: Avenir;}
.st-button {text-align: center;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)

# Initialize session state
if 'initialized' not in st.session_state:
    st.session_state.initialized = False
    st.session_state.video_frames = None
    st.session_state.video_features = None
    st.session_state.fps = None
    st.session_state.frame_indices = None
    st.session_state.url = EXAMPLE_URL

# Load data on first run
if not st.session_state.initialized:
    cached_frames, cached_features, cached_fps, cached_frame_indices = load_cached_data(EXAMPLE_URL)
    
    if cached_frames is not None:
        st.session_state.video_frames = cached_frames
        st.session_state.video_features = cached_features
        st.session_state.fps = cached_fps
        st.session_state.frame_indices = cached_frame_indices
        st.session_state.initialized = True
    else:
        st.error("Could not load video data. Please contact the administrator.")
        st.stop()

st.title("Which Frame? πŸŽžοΈπŸ”")
st.markdown("""
Search a video semantically. For example, which frame has "a person with sunglasses"?
Search using text, images, or a mix of text + image. WhichFrame uses [CLIP](https://github.com/openai/CLIP) for zero-shot frame classification.
""")

st.video(EXAMPLE_URL)
st.caption("Note: Try out the code linked at the bottom of the page to run WhichFrame on your own videos.")

if st.session_state.initialized:
    search_type = st.radio("Search Method", ["Text Search", "Image Search", "Text + Image Search"], index=0)
    
    if search_type == "Text Search":  # Text Search
        text_query = st.text_input("Type a search query (e.g., 'red car' or 'person with sunglasses')")
        if st.button("Search"):
            if not text_query:
                st.error("Please enter a search query first")
            else:
                text_search(text_query, st.session_state.video_features, st.session_state.video_frames)
    elif search_type == "Image Search":  # Image Search
        uploaded_file = st.file_uploader("Upload a query image", type=['png', 'jpg', 'jpeg'])
        if uploaded_file is not None:
            query_image = Image.open(uploaded_file).convert('RGB')
            st.image(query_image, caption="Query Image", width=200)
        if st.button("Search"):
            if uploaded_file is None:
                st.error("Please upload an image first")
            else:
                image_search(query_image, st.session_state.video_features, st.session_state.video_frames)
    else:  # Text + Image Search
        text_query = st.text_input("Type a search query")
        uploaded_file = st.file_uploader("Upload a query image", type=['png', 'jpg', 'jpeg'])
        if uploaded_file is not None:
            query_image = Image.open(uploaded_file).convert('RGB')
            st.image(query_image, caption="Query Image", width=200)
        
        if st.button("Search"):
            if not text_query or uploaded_file is None:
                st.error("Please provide both text query and image")
            else:
                text_and_image_search(text_query, query_image, st.session_state.video_features, st.session_state.video_frames)

st.markdown("---")
st.markdown(
    "By [David Chuan-En Lin](https://chuanenlin.com/). "
    "Play with the code at [https://github.com/chuanenlin/whichframe](https://github.com/chuanenlin/whichframe)."
    "v2 code with better interface and model at [https://github.com/chuanenlin/whichframe-v2](https://github.com/chuanenlin/whichframe-v2)."
)