chukbert's picture
Update app.py
1f1886f verified
raw
history blame
3.7 kB
import pandas as pd
import openai
import faiss
import numpy as np
import time
import os
import pickle
import gradio as gr
from langchain.embeddings.openai import OpenAIEmbeddings
from io import StringIO
from huggingface_hub import hf_hub_download
from huggingface_hub import login
openai.api_key = os.getenv("OPENAI_API_KEY")
hf_token = os.getenv("HF_TOKEN")
login(token=hf_token)
def load_embeddings_and_faiss():
embeddings_path = hf_hub_download(repo_id="chukbert/embedding-faq-medquad", filename="embeddings.pkl",repo_type="dataset", token=hf_token)
faiss_index_path = hf_hub_download(repo_id="chukbert/embedding-faq-medquad", filename="faiss.index",repo_type="dataset", token=hf_token)
faiss_index = faiss.read_index(faiss_index_path)
with open(embeddings_path, 'rb') as f:
question_embeddings = pickle.load(f)
return faiss_index, question_embeddings
def retrieve_answer(question, faiss_index, embedding_model, answers, log_output, threshold=0.2):
question_embedding = embedding_model.embed_query(question)
distances, indices = faiss_index.search(np.array([question_embedding]), k=1)
closest_distance = distances[0][0]
closest_index = indices[0][0]
log_output.write(f"closest_distance: {closest_distance}")
if closest_distance > threshold:
return "No good match found in dataset. Using GPT-4o-mini to generate an answer."
return answers[closest_index]
def ask_openai_gpt4(question):
response = openai.chat.completions.create(
messages=[
{"role": "user", "content": f"Answer the following medical question: {question}"}
],
model="gpt-4o-mini",
max_tokens=150
)
return response.choices[0].message.content
def chatbot(user_input):
log_output = StringIO() # To capture logs
faiss_index, question_embeddings = load_embeddings_and_faiss()
embedding_model = OpenAIEmbeddings(openai_api_key=openai.api_key)
start_time = time.time() # Start timer
log_output.write("Retrieving answer from FAISS...\n")
response_text = retrieve_answer(user_input, faiss_index, embedding_model, answers, log_output, threshold=0.3)
if response_text == "No good match found in dataset. Using GPT-4o-mini to generate an answer.":
log_output.write("No good match found in dataset. Using GPT-4o-mini to generate an answer.\n")
response_text = ask_openai_gpt4(user_input)
end_time = time.time() # End timer
response_time = end_time - start_time # Calculate response time
# Log the final response time
# Return the chatbot response, response time, and log
return response_text, f"Response time: {response_time:.4f} seconds", log_output.getvalue()
# Simplified Gradio interface with response, response time, and logs
demo = gr.Interface(
fn=chatbot, # Main chatbot function
inputs="text", # User input: single text field
outputs=[
gr.Textbox(label="Chatbot Response"), # Named output for the chatbot response
gr.Textbox(label="Response Time"), # Named output for the response time
gr.Textbox(label="Logs") # Logs
],
title="Medical Chatbot with Custom Knowledge About Medical FAQ",
description="A chatbot with custom knowledge using FAISS for quick responses or fallback to GPT-4o-mini when no relevant answer is found. Response time is also tracked."
)
if __name__ == "__main__":
# Load dataset
df = pd.read_csv("medquad.csv")
questions = df['question'].tolist()
answers = df['answer'].tolist()
print(f"Loaded questions and answers. Number of questions: {len(questions)}, Number of answers: {len(answers)}")
demo.launch()