Spaces:
Sleeping
Sleeping
import pandas as pd | |
import openai | |
import faiss | |
import numpy as np | |
import time | |
import os | |
import pickle | |
import gradio as gr | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from io import StringIO | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
def create_and_save_faiss_index(questions, embedding_model, index_file, embedding_file): | |
question_embeddings = embedding_model.embed_documents(questions) | |
faiss_index = faiss.IndexFlatL2(len(question_embeddings[0])) | |
faiss_index.add(np.array(question_embeddings)) | |
faiss.write_index(faiss_index, index_file) | |
with open(embedding_file, 'wb') as f: | |
pickle.dump(question_embeddings, f) | |
return faiss_index, question_embeddings | |
def load_faiss_index(index_file, embedding_file): | |
faiss_index = faiss.read_index(index_file) | |
with open(embedding_file, 'rb') as f: | |
question_embeddings = pickle.load(f) | |
return faiss_index, question_embeddings | |
def retrieve_answer(question, faiss_index, embedding_model, answers, threshold=0.8): | |
question_embedding = embedding_model.embed_query(question) | |
distances, indices = faiss_index.search(np.array([question_embedding]), k=1) | |
closest_distance = distances[0][0] | |
closest_index = indices[0][0] | |
print(f"closest_distance: {closest_distance}") | |
if closest_distance > threshold: | |
return "No good match found in dataset. Using GPT-4o-mini to generate an answer." | |
else: | |
return answers[closest_index] | |
def ask_openai_gpt4(question): | |
response = openai.chat.completions.create( | |
messages=[ | |
{"role": "user", "content": f"Answer the following medical question: {question}"} | |
], | |
model="gpt-4o-mini", | |
max_tokens=150 | |
) | |
return response.choices[0].message.content | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
log_output = StringIO() | |
start_time = time.time() | |
if os.path.exists('faiss.index') and os.path.exists('embeddings.pkl'): | |
log_output.write("Loading FAISS index from disk...\n") | |
faiss_index, question_embeddings = load_faiss_index('faiss.index', 'embeddings.pkl') | |
else: | |
log_output.write("Creating and saving FAISS index...\n") | |
df = pd.read_csv("medquad.csv") | |
questions = df['question'].tolist() | |
answers = df['answer'].tolist() | |
embedding_model = OpenAIEmbeddings(openai_api_key=openai.api_key) | |
faiss_index, question_embeddings = create_and_save_faiss_index(questions, embedding_model, 'faiss.index', 'embeddings.pkl') | |
messages = [{"role": "system", "content": system_message}] | |
for user_message, bot_response in history: | |
messages.append({"role": "user", "content": user_message}) | |
if bot_response: | |
messages.append({"role": "assistant", "content": bot_response}) | |
user_message = message | |
messages.append({"role": "user", "content": user_message}) | |
response_text = retrieve_answer(user_message, faiss_index, OpenAIEmbeddings(openai_api_key=openai.api_key), answers=["..."], threshold=0.8) | |
if response_text == "No good match found in dataset. Using GPT-4o-mini to generate an answer.": | |
log_output.write("No good match found in dataset. Using GPT-4o-mini to generate an answer.\n") | |
response_text = ask_openai_gpt4(user_message) | |
# Stop the timer and calculate response time | |
end_time = time.time() | |
response_time = end_time - start_time # Time in seconds | |
# Yield the response with the logs and response time | |
yield response_text, f"Response time: {response_time:.4f} seconds", log_output.getvalue() | |
# Gradio ChatInterface with additional inputs for model settings and response time | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") | |
], | |
title="Medical Chatbot with Customizable Parameters and Response Time", | |
description="A chatbot with customizable parameters using FAISS for quick responses or fallback to GPT-4 when no relevant answer is found. Response time is also tracked." | |
) | |
if __name__ == "__main__": | |
demo.launch() | |