Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
messages = [{"role": "system", "content": system_message}]
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
41 |
|
42 |
|
43 |
-
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
additional_inputs=[
|
49 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import openai
|
3 |
+
import faiss
|
4 |
+
import numpy as np
|
5 |
+
import time
|
6 |
+
import os
|
7 |
+
import pickle
|
8 |
import gradio as gr
|
9 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
10 |
+
from io import StringIO
|
11 |
+
|
12 |
+
def create_and_save_faiss_index(questions, embedding_model, index_file, embedding_file):
|
13 |
+
question_embeddings = embedding_model.embed_documents(questions)
|
14 |
+
faiss_index = faiss.IndexFlatL2(len(question_embeddings[0]))
|
15 |
+
faiss_index.add(np.array(question_embeddings))
|
16 |
+
|
17 |
+
faiss.write_index(faiss_index, index_file)
|
18 |
+
with open(embedding_file, 'wb') as f:
|
19 |
+
pickle.dump(question_embeddings, f)
|
20 |
+
|
21 |
+
return faiss_index, question_embeddings
|
22 |
+
|
23 |
+
def load_faiss_index(index_file, embedding_file):
|
24 |
+
faiss_index = faiss.read_index(index_file)
|
25 |
+
with open(embedding_file, 'rb') as f:
|
26 |
+
question_embeddings = pickle.load(f)
|
27 |
+
return faiss_index, question_embeddings
|
28 |
+
|
29 |
+
def retrieve_answer(question, faiss_index, embedding_model, answers, threshold=0.8):
|
30 |
+
question_embedding = embedding_model.embed_query(question)
|
31 |
+
distances, indices = faiss_index.search(np.array([question_embedding]), k=1)
|
32 |
+
|
33 |
+
closest_distance = distances[0][0]
|
34 |
+
closest_index = indices[0][0]
|
35 |
+
print(f"closest_distance: {closest_distance}")
|
36 |
+
|
37 |
+
if closest_distance > threshold:
|
38 |
+
return "No good match found in dataset. Using GPT-4o-mini to generate an answer."
|
39 |
+
else:
|
40 |
+
return answers[closest_index]
|
41 |
+
|
42 |
+
def ask_openai_gpt4(question):
|
43 |
+
response = openai.chat.completions.create(
|
44 |
+
messages=[
|
45 |
+
{"role": "user", "content": f"Answer the following medical question: {question}"}
|
46 |
+
],
|
47 |
+
model="gpt-4o-mini",
|
48 |
+
max_tokens=150
|
49 |
+
)
|
50 |
+
return response.choices[0].message.content
|
51 |
+
|
52 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
53 |
+
log_output = StringIO()
|
54 |
+
|
55 |
+
start_time = time.time()
|
56 |
+
|
57 |
+
if os.path.exists('faiss.index') and os.path.exists('embeddings.pkl'):
|
58 |
+
log_output.write("Loading FAISS index from disk...\n")
|
59 |
+
faiss_index, question_embeddings = load_faiss_index('faiss.index', 'embeddings.pkl')
|
60 |
+
else:
|
61 |
+
log_output.write("Creating and saving FAISS index...\n")
|
62 |
+
df = pd.read_csv("medquad.csv")
|
63 |
+
questions = df['question'].tolist()
|
64 |
+
answers = df['answer'].tolist()
|
65 |
+
embedding_model = OpenAIEmbeddings(openai_api_key=openai.api_key)
|
66 |
+
faiss_index, question_embeddings = create_and_save_faiss_index(questions, embedding_model, 'faiss.index', 'embeddings.pkl')
|
67 |
+
|
68 |
messages = [{"role": "system", "content": system_message}]
|
69 |
+
for user_message, bot_response in history:
|
70 |
+
messages.append({"role": "user", "content": user_message})
|
71 |
+
if bot_response:
|
72 |
+
messages.append({"role": "assistant", "content": bot_response})
|
73 |
|
74 |
+
user_message = message
|
75 |
+
messages.append({"role": "user", "content": user_message})
|
|
|
|
|
|
|
76 |
|
77 |
+
response_text = retrieve_answer(user_message, faiss_index, OpenAIEmbeddings(openai_api_key=openai.api_key), answers=["..."], threshold=0.8)
|
78 |
|
79 |
+
if response_text == "No good match found in dataset. Using GPT-4o-mini to generate an answer.":
|
80 |
+
log_output.write("No good match found in dataset. Using GPT-4o-mini to generate an answer.\n")
|
81 |
+
response_text = ask_openai_gpt4(user_message)
|
82 |
|
83 |
+
# Stop the timer and calculate response time
|
84 |
+
end_time = time.time()
|
85 |
+
response_time = end_time - start_time # Time in seconds
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
# Yield the response with the logs and response time
|
88 |
+
yield response_text, f"Response time: {response_time:.4f} seconds", log_output.getvalue()
|
89 |
|
90 |
|
91 |
+
# Gradio ChatInterface with additional inputs for model settings and response time
|
|
|
|
|
92 |
demo = gr.ChatInterface(
|
93 |
+
fn=respond,
|
94 |
additional_inputs=[
|
95 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
96 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
97 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
98 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
],
|
100 |
+
title="Medical Chatbot with Customizable Parameters and Response Time",
|
101 |
+
description="A chatbot with customizable parameters using FAISS for quick responses or fallback to GPT-4 when no relevant answer is found. Response time is also tracked."
|
102 |
)
|
103 |
|
|
|
104 |
if __name__ == "__main__":
|
105 |
demo.launch()
|