Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -61,47 +61,67 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
61 |
|
62 |
start_time = time.time()
|
63 |
|
|
|
64 |
if os.path.exists('faiss.index') and os.path.exists('embeddings.pkl'):
|
65 |
log_output.write("Loading FAISS index from disk...\n")
|
66 |
faiss_index, question_embeddings = load_faiss_index('faiss.index', 'embeddings.pkl')
|
|
|
67 |
else:
|
68 |
log_output.write("Creating and saving FAISS index...\n")
|
69 |
|
70 |
embedding_model = OpenAIEmbeddings(openai_api_key=openai.api_key)
|
71 |
faiss_index, question_embeddings = create_and_save_faiss_index(questions, embedding_model, 'faiss.index', 'embeddings.pkl')
|
|
|
72 |
|
|
|
|
|
|
|
|
|
|
|
73 |
messages = [{"role": "system", "content": system_message}]
|
74 |
for user_message, bot_response in history:
|
75 |
messages.append({"role": "user", "content": user_message})
|
76 |
if bot_response:
|
77 |
messages.append({"role": "assistant", "content": bot_response})
|
78 |
|
|
|
79 |
user_message = message
|
80 |
messages.append({"role": "user", "content": user_message})
|
81 |
|
82 |
-
|
|
|
83 |
|
84 |
-
if response_text == "No good match found in dataset. Using GPT-
|
85 |
-
log_output.write("No good match found in dataset. Using GPT-
|
86 |
response_text = ask_openai_gpt4(user_message)
|
87 |
|
88 |
# Stop the timer and calculate response time
|
89 |
end_time = time.time()
|
90 |
response_time = end_time - start_time # Time in seconds
|
91 |
|
92 |
-
#
|
93 |
-
|
94 |
|
95 |
|
96 |
# Gradio ChatInterface with additional inputs for model settings and response time
|
97 |
demo = gr.ChatInterface(
|
98 |
fn=respond,
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
title="Medical Chatbot with Customizable Parameters and Response Time",
|
100 |
-
description="A chatbot with customizable parameters using FAISS for quick responses or fallback to GPT-4 when no relevant answer is found. Response time is also tracked."
|
|
|
101 |
)
|
102 |
|
103 |
if __name__ == "__main__":
|
|
|
104 |
df = pd.read_csv("medquad.csv")
|
105 |
questions = df['question'].tolist()
|
106 |
answers = df['answer'].tolist()
|
107 |
-
|
|
|
|
|
|
61 |
|
62 |
start_time = time.time()
|
63 |
|
64 |
+
# Debugging - Ensure that FAISS index and embeddings are correctly loaded
|
65 |
if os.path.exists('faiss.index') and os.path.exists('embeddings.pkl'):
|
66 |
log_output.write("Loading FAISS index from disk...\n")
|
67 |
faiss_index, question_embeddings = load_faiss_index('faiss.index', 'embeddings.pkl')
|
68 |
+
print(f"FAISS index and embeddings loaded successfully. Number of embeddings: {len(question_embeddings)}")
|
69 |
else:
|
70 |
log_output.write("Creating and saving FAISS index...\n")
|
71 |
|
72 |
embedding_model = OpenAIEmbeddings(openai_api_key=openai.api_key)
|
73 |
faiss_index, question_embeddings = create_and_save_faiss_index(questions, embedding_model, 'faiss.index', 'embeddings.pkl')
|
74 |
+
print(f"Created new FAISS index. Number of questions: {len(questions)}")
|
75 |
|
76 |
+
# Debugging - Ensure questions and answers lists are valid
|
77 |
+
print(f"questions list length: {len(questions)}") # Debugging print
|
78 |
+
print(f"answers list length: {len(answers)}") # Debugging print
|
79 |
+
|
80 |
+
# Prepare message history
|
81 |
messages = [{"role": "system", "content": system_message}]
|
82 |
for user_message, bot_response in history:
|
83 |
messages.append({"role": "user", "content": user_message})
|
84 |
if bot_response:
|
85 |
messages.append({"role": "assistant", "content": bot_response})
|
86 |
|
87 |
+
# Add the current user message
|
88 |
user_message = message
|
89 |
messages.append({"role": "user", "content": user_message})
|
90 |
|
91 |
+
# Retrieve answer from FAISS or fallback to GPT-4
|
92 |
+
response_text = retrieve_answer(user_message, faiss_index, OpenAIEmbeddings(openai_api_key=openai.api_key), answers, threshold=0.35)
|
93 |
|
94 |
+
if response_text == "No good match found in dataset. Using GPT-4 to generate an answer.":
|
95 |
+
log_output.write("No good match found in dataset. Using GPT-4 to generate an answer.\n")
|
96 |
response_text = ask_openai_gpt4(user_message)
|
97 |
|
98 |
# Stop the timer and calculate response time
|
99 |
end_time = time.time()
|
100 |
response_time = end_time - start_time # Time in seconds
|
101 |
|
102 |
+
# Return the response, response time, and logs
|
103 |
+
return response_text, f"Response time: {response_time:.4f} seconds", log_output.getvalue()
|
104 |
|
105 |
|
106 |
# Gradio ChatInterface with additional inputs for model settings and response time
|
107 |
demo = gr.ChatInterface(
|
108 |
fn=respond,
|
109 |
+
additional_inputs=[
|
110 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
111 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
112 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
113 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
114 |
+
],
|
115 |
title="Medical Chatbot with Customizable Parameters and Response Time",
|
116 |
+
description="A chatbot with customizable parameters using FAISS for quick responses or fallback to GPT-4 when no relevant answer is found. Response time is also tracked.",
|
117 |
+
type='messages' # Set type to 'messages' instead of 'tuples'
|
118 |
)
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
+
# Load dataset
|
122 |
df = pd.read_csv("medquad.csv")
|
123 |
questions = df['question'].tolist()
|
124 |
answers = df['answer'].tolist()
|
125 |
+
|
126 |
+
print(f"Loaded questions and answers. Number of questions: {len(questions)}, Number of answers: {len(answers)}")
|
127 |
+
demo.launch()
|