Spaces:
Running
on
T4
Running
on
T4
import functools | |
import re | |
from pathlib import Path | |
from shutil import copy2 | |
import pymupdf | |
def remove_images_from_markdown(markdown_text): | |
# remove <image> and  from markdown | |
markdown_text = re.sub(r"<img[^>]*>", "", markdown_text) | |
markdown_text = re.sub(r"!\[[^\]]*\]\([^)]*\)", "", markdown_text) | |
return markdown_text | |
def trim_pages(pdf_path, output_path, start_page=0, trim_pages=5): | |
doc = pymupdf.open(pdf_path) | |
parent_dir_name = Path(pdf_path).parent.name | |
output_file_path = Path(output_path) / f"{parent_dir_name}.pdf" | |
num_pages = len(doc) | |
if num_pages > trim_pages: | |
to_select = list(range(start_page, min(start_page + trim_pages, num_pages))) | |
doc.select(to_select) | |
doc.ez_save(output_file_path) | |
print("Trimmed pdf to with pages", to_select, "path", output_file_path) | |
else: | |
copy2(pdf_path, str(output_file_path)) | |
return str(output_file_path) | |
def patch_unimernet_model(): | |
from unimernet.models.unimernet.encoder_decoder import CustomMBartForCausalLM | |
# Save the original __init__ method | |
original_init = CustomMBartForCausalLM.__init__ | |
# Define a new __init__ method | |
def new_init(self, config): | |
config._attn_implementation = "eager" | |
original_init(self, config) | |
# Monkey patch the __init__ method | |
CustomMBartForCausalLM.__init__ = new_init | |
def fix_problematic_imports(): | |
import sys | |
import types | |
# Create a fake 'UnimernetModel' class inside a fake 'Unimernet' module | |
fake_unimernet_module = types.ModuleType( | |
"magic_pdf.model.sub_modules.mfr.unimernet.Unimernet" | |
) | |
fake_unimernet_module.UnimernetModel = type( # type: ignore | |
"UnimernetModel", (), {} | |
) | |
# Register fake module in sys.modules | |
sys.modules[ | |
"magic_pdf.model.sub_modules.mfr.unimernet.Unimernet" | |
] = fake_unimernet_module | |
def prepare_env_mineru(): | |
import json | |
import os | |
import nltk | |
# download nltk data | |
nltk.download("punkt_tab") | |
nltk.download("averaged_perceptron_tagger_eng") | |
home_path = Path.home() | |
config_path = home_path / "magic-pdf.json" | |
# skip download if config file exists | |
if config_path.exists(): | |
print("Config file exists, skipping models download") | |
return | |
# download models | |
os.system( | |
"wget https://github.com/opendatalab/MinerU/raw/" | |
"dev/scripts/download_models_hf.py -O download_models_hf.py" | |
) | |
os.system("python3 download_models_hf.py") | |
with open(config_path, "r") as file: | |
data = json.load(file) | |
data["device-mode"] = "cuda" | |
with open(config_path, "w") as file: | |
json.dump(data, file, indent=4) | |
os.system( | |
f"cp -r resources {home_path}/.local/lib/" | |
"python3.10/site-packages/magic_pdf/resources" | |
) | |
# copy OCR model weight | |
target_model_path = home_path / ".paddleocr" | |
os.system(f"cp -r paddleocr {target_model_path}") | |