ciditel commited on
Commit
54e47f4
·
verified ·
1 Parent(s): eefaae0
Files changed (1) hide show
  1. app.py +9 -4
app.py CHANGED
@@ -3,18 +3,19 @@ import torch
3
  import re
4
  import gradio as gr
5
  import random
 
6
  from diffusers import AutoPipelineForText2Image
7
  from diffusers import AutoPipelineForImage2Image
8
  from diffusers.utils import load_image, export_to_video
9
  from diffusers import StableVideoDiffusionPipeline
10
 
11
 
12
- pipelineVideo = StableVideoDiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt",).to("cuda")
13
- pipeline_text2image = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
14
- pipeline_image2image = AutoPipelineForImage2Image.from_pipe(pipeline_text2image).to("cuda")
15
- pipeline_text2image = pipeline_text2image.to("cuda")
16
 
17
  def img2video(image,seed="",fps=7,outfile=""):
 
18
  if seed=="":
19
  seed=random.randint(0, 5000)
20
 
@@ -30,13 +31,17 @@ def img2video(image,seed="",fps=7,outfile=""):
30
  generator = torch.manual_seed(seed)
31
  frames = pipelineVideo(image, decode_chunk_size=8, generator=generator).frames[0]
32
  export_to_video(frames, outfile, fps=fps)
 
33
  return outfile
34
 
35
  def text2img(prompt = "A cinematic shot of a baby racoon wearing an intricate italian priest robe.",guidance_scale=0.0, num_inference_steps=1):
 
36
  image = pipeline_text2image(prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
37
  return image
38
 
39
  def img2img(image,prompt="A cinematic shot of a baby racoon wearing an intricate italian priest robe.", guidance_scale=0.0, num_inference_steps=1,strength=0.5):
 
 
40
  init_image = load_image(image)
41
  init_image = init_image.resize((512, 512))
42
  image = pipeline_image2image(prompt, image=init_image, strength=strength, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
 
3
  import re
4
  import gradio as gr
5
  import random
6
+ import time
7
  from diffusers import AutoPipelineForText2Image
8
  from diffusers import AutoPipelineForImage2Image
9
  from diffusers.utils import load_image, export_to_video
10
  from diffusers import StableVideoDiffusionPipeline
11
 
12
 
13
+
14
+
15
+
 
16
 
17
  def img2video(image,seed="",fps=7,outfile=""):
18
+ pipelineVideo = StableVideoDiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt",).to("cuda")
19
  if seed=="":
20
  seed=random.randint(0, 5000)
21
 
 
31
  generator = torch.manual_seed(seed)
32
  frames = pipelineVideo(image, decode_chunk_size=8, generator=generator).frames[0]
33
  export_to_video(frames, outfile, fps=fps)
34
+ time.time(30)
35
  return outfile
36
 
37
  def text2img(prompt = "A cinematic shot of a baby racoon wearing an intricate italian priest robe.",guidance_scale=0.0, num_inference_steps=1):
38
+ pipeline_text2image = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo").to("cuda")
39
  image = pipeline_text2image(prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
40
  return image
41
 
42
  def img2img(image,prompt="A cinematic shot of a baby racoon wearing an intricate italian priest robe.", guidance_scale=0.0, num_inference_steps=1,strength=0.5):
43
+ pipeline_text2image = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo").to("cuda")
44
+ pipeline_image2image = AutoPipelineForImage2Image.from_pipe(pipeline_text2image).to("cuda")
45
  init_image = load_image(image)
46
  init_image = init_image.resize((512, 512))
47
  image = pipeline_image2image(prompt, image=init_image, strength=strength, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]