add img2img
Browse files
app.py
CHANGED
@@ -5,8 +5,10 @@ import re
|
|
5 |
import gradio as gr
|
6 |
from diffusers import AutoPipelineForText2Image
|
7 |
import torch
|
8 |
-
|
|
|
9 |
pipeline_text2image = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
|
|
|
10 |
pipeline_text2image = pipeline_text2image.to("cuda")
|
11 |
|
12 |
|
@@ -14,6 +16,12 @@ def text2img(prompt = "A cinematic shot of a baby racoon wearing an intricate it
|
|
14 |
image = pipeline_text2image(prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
|
15 |
return image
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
gradio_app_text2img = gr.Interface(
|
18 |
fn=text2img,
|
19 |
inputs=[
|
@@ -24,8 +32,18 @@ gradio_app_text2img = gr.Interface(
|
|
24 |
outputs="image",
|
25 |
)
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
demo = gr.TabbedInterface([gradio_app_text2img], ["text2img"])
|
29 |
|
30 |
if __name__ == "__main__":
|
31 |
demo.launch()
|
|
|
5 |
import gradio as gr
|
6 |
from diffusers import AutoPipelineForText2Image
|
7 |
import torch
|
8 |
+
from diffusers import AutoPipelineForImage2Image
|
9 |
+
from diffusers.utils import load_image, make_image_grid
|
10 |
pipeline_text2image = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
|
11 |
+
pipeline_image2image = AutoPipelineForImage2Image.from_pipe(pipeline_text2image).to("cuda")
|
12 |
pipeline_text2image = pipeline_text2image.to("cuda")
|
13 |
|
14 |
|
|
|
16 |
image = pipeline_text2image(prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
|
17 |
return image
|
18 |
|
19 |
+
def img2img(image,prompt=prompt, guidance_scale=0.0, num_inference_steps=1,strength=0.5):
|
20 |
+
init_image = load_image(image)
|
21 |
+
init_image = init_image.resize((512, 512))
|
22 |
+
image = pipeline_image2image(prompt, image=init_image, strength=strength, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
|
23 |
+
return image
|
24 |
+
|
25 |
gradio_app_text2img = gr.Interface(
|
26 |
fn=text2img,
|
27 |
inputs=[
|
|
|
32 |
outputs="image",
|
33 |
)
|
34 |
|
35 |
+
gradio_app_img2img = gr.Interface(
|
36 |
+
fn=text2img,
|
37 |
+
inputs=[
|
38 |
+
gr.Image(type='filepath'),
|
39 |
+
gr.Text(),
|
40 |
+
gr.Slider(0.0, 10.0, value=1,step=0.1),
|
41 |
+
gr.Slider(0.0, 10.0, value=1,step=1)
|
42 |
+
],
|
43 |
+
outputs="image",
|
44 |
+
)
|
45 |
|
46 |
+
demo = gr.TabbedInterface([gradio_app_text2img,gradio_app_img2img], ["text2img","img2img"])
|
47 |
|
48 |
if __name__ == "__main__":
|
49 |
demo.launch()
|