init commit
Browse files
app.py
CHANGED
@@ -1,7 +1,31 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
3 |
+
import torch
|
4 |
+
import re
|
5 |
import gradio as gr
|
6 |
+
from diffusers import AutoPipelineForText2Image
|
7 |
+
import torch
|
8 |
|
9 |
+
pipeline_text2image = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
|
10 |
+
pipeline_text2image = pipeline_text2image.to("cuda")
|
11 |
|
12 |
+
|
13 |
+
def text2img(prompt = "A cinematic shot of a baby racoon wearing an intricate italian priest robe.",guidance_scale=0.0, num_inference_steps=1):
|
14 |
+
image = pipeline_text2image(prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
|
15 |
+
return image
|
16 |
+
|
17 |
+
gradio_app_text2img = gr.Interface(
|
18 |
+
fn=text2img,
|
19 |
+
inputs=[
|
20 |
+
gr.Text(),
|
21 |
+
gr.Slider(0.0, 10.0, value=1,step=0.1),
|
22 |
+
gr.Slider(0.0, 10.0, value=1,step=1)
|
23 |
+
],
|
24 |
+
outputs="image",
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
demo = gr.TabbedInterface([gradio_app_text2img], ["text2img"])
|
29 |
+
|
30 |
+
if __name__ == "__main__":
|
31 |
+
demo.launch()
|