Spaces:
Running
Running
Upload 2 files
Browse files- Deepfake_detection.ipynb +1089 -0
- requirements.txt +7 -0
Deepfake_detection.ipynb
ADDED
@@ -0,0 +1,1089 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "a2220df6",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# Import Libraries"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 4,
|
14 |
+
"id": "7249bea4",
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"import gradio as gr\n",
|
19 |
+
"import torch\n",
|
20 |
+
"import torch.nn.functional as F\n",
|
21 |
+
"from facenet_pytorch import MTCNN, InceptionResnetV1\n",
|
22 |
+
"import numpy as np\n",
|
23 |
+
"from PIL import Image\n",
|
24 |
+
"import cv2\n",
|
25 |
+
"from pytorch_grad_cam import GradCAM\n",
|
26 |
+
"from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget\n",
|
27 |
+
"from pytorch_grad_cam.utils.image import show_cam_on_image\n",
|
28 |
+
"import warnings\n",
|
29 |
+
"warnings.filterwarnings(\"ignore\")"
|
30 |
+
]
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"cell_type": "code",
|
34 |
+
"execution_count": 2,
|
35 |
+
"id": "62f0492b-aad6-4464-ab96-1365b7f3a44e",
|
36 |
+
"metadata": {},
|
37 |
+
"outputs": [
|
38 |
+
{
|
39 |
+
"name": "stdout",
|
40 |
+
"output_type": "stream",
|
41 |
+
"text": [
|
42 |
+
"Requirement already satisfied: gradio in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (3.39.0)\n",
|
43 |
+
"Collecting gradio\n",
|
44 |
+
" Downloading gradio-4.19.1-py3-none-any.whl.metadata (15 kB)\n",
|
45 |
+
"Requirement already satisfied: aiofiles<24.0,>=22.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (23.2.1)\n",
|
46 |
+
"Requirement already satisfied: altair<6.0,>=4.2.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (5.2.0)\n",
|
47 |
+
"Requirement already satisfied: fastapi in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (0.109.2)\n",
|
48 |
+
"Requirement already satisfied: ffmpy in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (0.3.2)\n",
|
49 |
+
"Requirement already satisfied: gradio-client==0.10.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (0.10.0)\n",
|
50 |
+
"Requirement already satisfied: httpx in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (0.26.0)\n",
|
51 |
+
"Requirement already satisfied: huggingface-hub>=0.19.3 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (0.20.3)\n",
|
52 |
+
"Requirement already satisfied: importlib-resources<7.0,>=1.3 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (6.1.1)\n",
|
53 |
+
"Requirement already satisfied: jinja2<4.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (3.1.3)\n",
|
54 |
+
"Requirement already satisfied: markupsafe~=2.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (2.1.5)\n",
|
55 |
+
"Requirement already satisfied: matplotlib~=3.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (3.8.3)\n",
|
56 |
+
"Requirement already satisfied: numpy~=1.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (1.26.4)\n",
|
57 |
+
"Requirement already satisfied: orjson~=3.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (3.9.14)\n",
|
58 |
+
"Requirement already satisfied: packaging in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (23.2)\n",
|
59 |
+
"Requirement already satisfied: pandas<3.0,>=1.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (2.2.0)\n",
|
60 |
+
"Requirement already satisfied: pillow<11.0,>=8.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (9.4.0)\n",
|
61 |
+
"Requirement already satisfied: pydantic>=2.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (2.6.1)\n",
|
62 |
+
"Requirement already satisfied: pydub in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (0.25.1)\n",
|
63 |
+
"Requirement already satisfied: python-multipart>=0.0.9 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (0.0.9)\n",
|
64 |
+
"Requirement already satisfied: pyyaml<7.0,>=5.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (6.0.1)\n",
|
65 |
+
"Collecting ruff>=0.1.7 (from gradio)\n",
|
66 |
+
" Downloading ruff-0.2.1-py3-none-win_amd64.whl.metadata (23 kB)\n",
|
67 |
+
"Requirement already satisfied: semantic-version~=2.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (2.10.0)\n",
|
68 |
+
"Collecting tomlkit==0.12.0 (from gradio)\n",
|
69 |
+
" Downloading tomlkit-0.12.0-py3-none-any.whl.metadata (2.7 kB)\n",
|
70 |
+
"Collecting typer<1.0,>=0.9 (from typer[all]<1.0,>=0.9->gradio)\n",
|
71 |
+
" Downloading typer-0.9.0-py3-none-any.whl.metadata (14 kB)\n",
|
72 |
+
"Requirement already satisfied: typing-extensions~=4.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (4.9.0)\n",
|
73 |
+
"Requirement already satisfied: uvicorn>=0.14.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio) (0.27.1)\n",
|
74 |
+
"Requirement already satisfied: fsspec in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio-client==0.10.0->gradio) (2024.2.0)\n",
|
75 |
+
"Requirement already satisfied: websockets<12.0,>=10.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from gradio-client==0.10.0->gradio) (11.0.3)\n",
|
76 |
+
"Requirement already satisfied: jsonschema>=3.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from altair<6.0,>=4.2.0->gradio) (4.21.1)\n",
|
77 |
+
"Requirement already satisfied: toolz in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from altair<6.0,>=4.2.0->gradio) (0.12.1)\n",
|
78 |
+
"Requirement already satisfied: filelock in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from huggingface-hub>=0.19.3->gradio) (3.13.1)\n",
|
79 |
+
"Requirement already satisfied: requests in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from huggingface-hub>=0.19.3->gradio) (2.31.0)\n",
|
80 |
+
"Requirement already satisfied: tqdm>=4.42.1 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from huggingface-hub>=0.19.3->gradio) (4.66.2)\n",
|
81 |
+
"Requirement already satisfied: zipp>=3.1.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from importlib-resources<7.0,>=1.3->gradio) (3.17.0)\n",
|
82 |
+
"Requirement already satisfied: contourpy>=1.0.1 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from matplotlib~=3.0->gradio) (1.2.0)\n",
|
83 |
+
"Requirement already satisfied: cycler>=0.10 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from matplotlib~=3.0->gradio) (0.12.1)\n",
|
84 |
+
"Requirement already satisfied: fonttools>=4.22.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from matplotlib~=3.0->gradio) (4.49.0)\n",
|
85 |
+
"Requirement already satisfied: kiwisolver>=1.3.1 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from matplotlib~=3.0->gradio) (1.4.5)\n",
|
86 |
+
"Requirement already satisfied: pyparsing>=2.3.1 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from matplotlib~=3.0->gradio) (3.1.1)\n",
|
87 |
+
"Requirement already satisfied: python-dateutil>=2.7 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from matplotlib~=3.0->gradio) (2.8.2)\n",
|
88 |
+
"Requirement already satisfied: pytz>=2020.1 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from pandas<3.0,>=1.0->gradio) (2024.1)\n",
|
89 |
+
"Requirement already satisfied: tzdata>=2022.7 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from pandas<3.0,>=1.0->gradio) (2024.1)\n",
|
90 |
+
"Requirement already satisfied: annotated-types>=0.4.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from pydantic>=2.0->gradio) (0.6.0)\n",
|
91 |
+
"Requirement already satisfied: pydantic-core==2.16.2 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from pydantic>=2.0->gradio) (2.16.2)\n",
|
92 |
+
"Requirement already satisfied: click<9.0.0,>=7.1.1 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from typer<1.0,>=0.9->typer[all]<1.0,>=0.9->gradio) (8.1.7)\n",
|
93 |
+
"Requirement already satisfied: colorama<0.5.0,>=0.4.3 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from typer[all]<1.0,>=0.9->gradio) (0.4.6)\n",
|
94 |
+
"Collecting shellingham<2.0.0,>=1.3.0 (from typer[all]<1.0,>=0.9->gradio)\n",
|
95 |
+
" Downloading shellingham-1.5.4-py2.py3-none-any.whl.metadata (3.5 kB)\n",
|
96 |
+
"Collecting rich<14.0.0,>=10.11.0 (from typer[all]<1.0,>=0.9->gradio)\n",
|
97 |
+
" Downloading rich-13.7.0-py3-none-any.whl.metadata (18 kB)\n",
|
98 |
+
"Requirement already satisfied: h11>=0.8 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from uvicorn>=0.14.0->gradio) (0.14.0)\n",
|
99 |
+
"Requirement already satisfied: starlette<0.37.0,>=0.36.3 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from fastapi->gradio) (0.36.3)\n",
|
100 |
+
"Requirement already satisfied: anyio in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from httpx->gradio) (4.2.0)\n",
|
101 |
+
"Requirement already satisfied: certifi in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from httpx->gradio) (2024.2.2)\n",
|
102 |
+
"Requirement already satisfied: httpcore==1.* in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from httpx->gradio) (1.0.3)\n",
|
103 |
+
"Requirement already satisfied: idna in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from httpx->gradio) (3.6)\n",
|
104 |
+
"Requirement already satisfied: sniffio in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from httpx->gradio) (1.3.0)\n",
|
105 |
+
"Requirement already satisfied: attrs>=22.2.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (23.2.0)\n",
|
106 |
+
"Requirement already satisfied: jsonschema-specifications>=2023.03.6 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (2023.12.1)\n",
|
107 |
+
"Requirement already satisfied: referencing>=0.28.4 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (0.33.0)\n",
|
108 |
+
"Requirement already satisfied: rpds-py>=0.7.1 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (0.18.0)\n",
|
109 |
+
"Requirement already satisfied: six>=1.5 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from python-dateutil>=2.7->matplotlib~=3.0->gradio) (1.16.0)\n",
|
110 |
+
"Requirement already satisfied: markdown-it-py>=2.2.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from rich<14.0.0,>=10.11.0->typer[all]<1.0,>=0.9->gradio) (2.2.0)\n",
|
111 |
+
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from rich<14.0.0,>=10.11.0->typer[all]<1.0,>=0.9->gradio) (2.17.2)\n",
|
112 |
+
"Requirement already satisfied: exceptiongroup>=1.0.2 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from anyio->httpx->gradio) (1.2.0)\n",
|
113 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from requests->huggingface-hub>=0.19.3->gradio) (3.3.2)\n",
|
114 |
+
"Requirement already satisfied: urllib3<3,>=1.21.1 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from requests->huggingface-hub>=0.19.3->gradio) (2.2.0)\n",
|
115 |
+
"Requirement already satisfied: mdurl~=0.1 in c:\\kandikits\\deepfake-detection\\deepfake-detection-env\\lib\\site-packages (from markdown-it-py>=2.2.0->rich<14.0.0,>=10.11.0->typer[all]<1.0,>=0.9->gradio) (0.1.2)\n",
|
116 |
+
"Downloading gradio-4.19.1-py3-none-any.whl (16.9 MB)\n",
|
117 |
+
" ---------------------------------------- 0.0/16.9 MB ? eta -:--:--\n",
|
118 |
+
" ---------------------------------------- 0.0/16.9 MB 1.9 MB/s eta 0:00:09\n",
|
119 |
+
" ---------------------------------------- 0.2/16.9 MB 2.4 MB/s eta 0:00:08\n",
|
120 |
+
" - -------------------------------------- 0.5/16.9 MB 3.9 MB/s eta 0:00:05\n",
|
121 |
+
" -- ------------------------------------- 1.1/16.9 MB 6.1 MB/s eta 0:00:03\n",
|
122 |
+
" ----- ---------------------------------- 2.2/16.9 MB 10.2 MB/s eta 0:00:02\n",
|
123 |
+
" -------- ------------------------------- 3.7/16.9 MB 13.9 MB/s eta 0:00:01\n",
|
124 |
+
" ----------- ---------------------------- 5.1/16.9 MB 15.4 MB/s eta 0:00:01\n",
|
125 |
+
" --------------- ------------------------ 6.6/16.9 MB 18.4 MB/s eta 0:00:01\n",
|
126 |
+
" ------------------- -------------------- 8.4/16.9 MB 20.6 MB/s eta 0:00:01\n",
|
127 |
+
" --------------------- ------------------ 9.2/16.9 MB 21.1 MB/s eta 0:00:01\n",
|
128 |
+
" --------------------- ------------------ 9.2/16.9 MB 21.1 MB/s eta 0:00:01\n",
|
129 |
+
" --------------------- ------------------ 9.2/16.9 MB 21.1 MB/s eta 0:00:01\n",
|
130 |
+
" --------------------- ------------------ 9.3/16.9 MB 16.5 MB/s eta 0:00:01\n",
|
131 |
+
" ------------------------ --------------- 10.3/16.9 MB 17.2 MB/s eta 0:00:01\n",
|
132 |
+
" ------------------------ --------------- 10.5/16.9 MB 17.3 MB/s eta 0:00:01\n",
|
133 |
+
" -------------------------- ------------- 11.1/16.9 MB 18.7 MB/s eta 0:00:01\n",
|
134 |
+
" ---------------------------- ----------- 12.1/16.9 MB 17.7 MB/s eta 0:00:01\n",
|
135 |
+
" -------------------------------- ------- 13.6/16.9 MB 18.2 MB/s eta 0:00:01\n",
|
136 |
+
" ----------------------------------- ---- 14.9/16.9 MB 18.2 MB/s eta 0:00:01\n",
|
137 |
+
" --------------------------------------- 16.6/16.9 MB 18.2 MB/s eta 0:00:01\n",
|
138 |
+
" ---------------------------------------- 16.9/16.9 MB 16.8 MB/s eta 0:00:00\n",
|
139 |
+
"Downloading tomlkit-0.12.0-py3-none-any.whl (37 kB)\n",
|
140 |
+
"Downloading ruff-0.2.1-py3-none-win_amd64.whl (7.4 MB)\n",
|
141 |
+
" ---------------------------------------- 0.0/7.4 MB ? eta -:--:--\n",
|
142 |
+
" -------- ------------------------------- 1.6/7.4 MB 51.9 MB/s eta 0:00:01\n",
|
143 |
+
" ---------------- ----------------------- 3.1/7.4 MB 40.2 MB/s eta 0:00:01\n",
|
144 |
+
" ------------------------- -------------- 4.8/7.4 MB 37.9 MB/s eta 0:00:01\n",
|
145 |
+
" --------------------------------- ------ 6.3/7.4 MB 36.5 MB/s eta 0:00:01\n",
|
146 |
+
" --------------------------------------- 7.4/7.4 MB 33.7 MB/s eta 0:00:01\n",
|
147 |
+
" ---------------------------------------- 7.4/7.4 MB 31.6 MB/s eta 0:00:00\n",
|
148 |
+
"Downloading typer-0.9.0-py3-none-any.whl (45 kB)\n",
|
149 |
+
" ---------------------------------------- 0.0/45.9 kB ? eta -:--:--\n",
|
150 |
+
" ---------------------------------------- 45.9/45.9 kB ? eta 0:00:00\n",
|
151 |
+
"Downloading rich-13.7.0-py3-none-any.whl (240 kB)\n",
|
152 |
+
" ---------------------------------------- 0.0/240.6 kB ? eta -:--:--\n",
|
153 |
+
" --------------------------------------- 240.6/240.6 kB 14.4 MB/s eta 0:00:00\n",
|
154 |
+
"Downloading shellingham-1.5.4-py2.py3-none-any.whl (9.8 kB)\n",
|
155 |
+
"Installing collected packages: tomlkit, shellingham, ruff, typer, rich, gradio\n",
|
156 |
+
" Attempting uninstall: gradio\n",
|
157 |
+
" Found existing installation: gradio 3.39.0\n",
|
158 |
+
" Uninstalling gradio-3.39.0:\n",
|
159 |
+
" Successfully uninstalled gradio-3.39.0\n",
|
160 |
+
"Successfully installed gradio-4.19.1 rich-13.7.0 ruff-0.2.1 shellingham-1.5.4 tomlkit-0.12.0 typer-0.9.0\n"
|
161 |
+
]
|
162 |
+
}
|
163 |
+
],
|
164 |
+
"source": [
|
165 |
+
"!pip install -U gradio"
|
166 |
+
]
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"cell_type": "markdown",
|
170 |
+
"id": "d25e1c5d",
|
171 |
+
"metadata": {},
|
172 |
+
"source": [
|
173 |
+
"# Download and Load Model"
|
174 |
+
]
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "code",
|
178 |
+
"execution_count": 5,
|
179 |
+
"id": "237fbf44",
|
180 |
+
"metadata": {},
|
181 |
+
"outputs": [],
|
182 |
+
"source": [
|
183 |
+
"DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'\n",
|
184 |
+
"\n",
|
185 |
+
"mtcnn = MTCNN(\n",
|
186 |
+
" select_largest=False,\n",
|
187 |
+
" post_process=False,\n",
|
188 |
+
" device=DEVICE\n",
|
189 |
+
").to(DEVICE).eval()"
|
190 |
+
]
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"cell_type": "code",
|
194 |
+
"execution_count": 6,
|
195 |
+
"id": "f3ef2b4f",
|
196 |
+
"metadata": {},
|
197 |
+
"outputs": [
|
198 |
+
{
|
199 |
+
"data": {
|
200 |
+
"application/vnd.jupyter.widget-view+json": {
|
201 |
+
"model_id": "43131e0cdbdf44beb6f775f854ebbf07",
|
202 |
+
"version_major": 2,
|
203 |
+
"version_minor": 0
|
204 |
+
},
|
205 |
+
"text/plain": [
|
206 |
+
" 0%| | 0.00/107M [00:00<?, ?B/s]"
|
207 |
+
]
|
208 |
+
},
|
209 |
+
"metadata": {},
|
210 |
+
"output_type": "display_data"
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"data": {
|
214 |
+
"text/plain": [
|
215 |
+
"InceptionResnetV1(\n",
|
216 |
+
" (conv2d_1a): BasicConv2d(\n",
|
217 |
+
" (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), bias=False)\n",
|
218 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
219 |
+
" (relu): ReLU()\n",
|
220 |
+
" )\n",
|
221 |
+
" (conv2d_2a): BasicConv2d(\n",
|
222 |
+
" (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), bias=False)\n",
|
223 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
224 |
+
" (relu): ReLU()\n",
|
225 |
+
" )\n",
|
226 |
+
" (conv2d_2b): BasicConv2d(\n",
|
227 |
+
" (conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
228 |
+
" (bn): BatchNorm2d(64, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
229 |
+
" (relu): ReLU()\n",
|
230 |
+
" )\n",
|
231 |
+
" (maxpool_3a): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
|
232 |
+
" (conv2d_3b): BasicConv2d(\n",
|
233 |
+
" (conv): Conv2d(64, 80, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
234 |
+
" (bn): BatchNorm2d(80, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
235 |
+
" (relu): ReLU()\n",
|
236 |
+
" )\n",
|
237 |
+
" (conv2d_4a): BasicConv2d(\n",
|
238 |
+
" (conv): Conv2d(80, 192, kernel_size=(3, 3), stride=(1, 1), bias=False)\n",
|
239 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
240 |
+
" (relu): ReLU()\n",
|
241 |
+
" )\n",
|
242 |
+
" (conv2d_4b): BasicConv2d(\n",
|
243 |
+
" (conv): Conv2d(192, 256, kernel_size=(3, 3), stride=(2, 2), bias=False)\n",
|
244 |
+
" (bn): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
245 |
+
" (relu): ReLU()\n",
|
246 |
+
" )\n",
|
247 |
+
" (repeat_1): Sequential(\n",
|
248 |
+
" (0): Block35(\n",
|
249 |
+
" (branch0): BasicConv2d(\n",
|
250 |
+
" (conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
251 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
252 |
+
" (relu): ReLU()\n",
|
253 |
+
" )\n",
|
254 |
+
" (branch1): Sequential(\n",
|
255 |
+
" (0): BasicConv2d(\n",
|
256 |
+
" (conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
257 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
258 |
+
" (relu): ReLU()\n",
|
259 |
+
" )\n",
|
260 |
+
" (1): BasicConv2d(\n",
|
261 |
+
" (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
262 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
263 |
+
" (relu): ReLU()\n",
|
264 |
+
" )\n",
|
265 |
+
" )\n",
|
266 |
+
" (branch2): Sequential(\n",
|
267 |
+
" (0): BasicConv2d(\n",
|
268 |
+
" (conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
269 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
270 |
+
" (relu): ReLU()\n",
|
271 |
+
" )\n",
|
272 |
+
" (1): BasicConv2d(\n",
|
273 |
+
" (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
274 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
275 |
+
" (relu): ReLU()\n",
|
276 |
+
" )\n",
|
277 |
+
" (2): BasicConv2d(\n",
|
278 |
+
" (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
279 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
280 |
+
" (relu): ReLU()\n",
|
281 |
+
" )\n",
|
282 |
+
" )\n",
|
283 |
+
" (conv2d): Conv2d(96, 256, kernel_size=(1, 1), stride=(1, 1))\n",
|
284 |
+
" (relu): ReLU()\n",
|
285 |
+
" )\n",
|
286 |
+
" (1): Block35(\n",
|
287 |
+
" (branch0): BasicConv2d(\n",
|
288 |
+
" (conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
289 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
290 |
+
" (relu): ReLU()\n",
|
291 |
+
" )\n",
|
292 |
+
" (branch1): Sequential(\n",
|
293 |
+
" (0): BasicConv2d(\n",
|
294 |
+
" (conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
295 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
296 |
+
" (relu): ReLU()\n",
|
297 |
+
" )\n",
|
298 |
+
" (1): BasicConv2d(\n",
|
299 |
+
" (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
300 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
301 |
+
" (relu): ReLU()\n",
|
302 |
+
" )\n",
|
303 |
+
" )\n",
|
304 |
+
" (branch2): Sequential(\n",
|
305 |
+
" (0): BasicConv2d(\n",
|
306 |
+
" (conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
307 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
308 |
+
" (relu): ReLU()\n",
|
309 |
+
" )\n",
|
310 |
+
" (1): BasicConv2d(\n",
|
311 |
+
" (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
312 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
313 |
+
" (relu): ReLU()\n",
|
314 |
+
" )\n",
|
315 |
+
" (2): BasicConv2d(\n",
|
316 |
+
" (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
317 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
318 |
+
" (relu): ReLU()\n",
|
319 |
+
" )\n",
|
320 |
+
" )\n",
|
321 |
+
" (conv2d): Conv2d(96, 256, kernel_size=(1, 1), stride=(1, 1))\n",
|
322 |
+
" (relu): ReLU()\n",
|
323 |
+
" )\n",
|
324 |
+
" (2): Block35(\n",
|
325 |
+
" (branch0): BasicConv2d(\n",
|
326 |
+
" (conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
327 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
328 |
+
" (relu): ReLU()\n",
|
329 |
+
" )\n",
|
330 |
+
" (branch1): Sequential(\n",
|
331 |
+
" (0): BasicConv2d(\n",
|
332 |
+
" (conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
333 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
334 |
+
" (relu): ReLU()\n",
|
335 |
+
" )\n",
|
336 |
+
" (1): BasicConv2d(\n",
|
337 |
+
" (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
338 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
339 |
+
" (relu): ReLU()\n",
|
340 |
+
" )\n",
|
341 |
+
" )\n",
|
342 |
+
" (branch2): Sequential(\n",
|
343 |
+
" (0): BasicConv2d(\n",
|
344 |
+
" (conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
345 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
346 |
+
" (relu): ReLU()\n",
|
347 |
+
" )\n",
|
348 |
+
" (1): BasicConv2d(\n",
|
349 |
+
" (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
350 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
351 |
+
" (relu): ReLU()\n",
|
352 |
+
" )\n",
|
353 |
+
" (2): BasicConv2d(\n",
|
354 |
+
" (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
355 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
356 |
+
" (relu): ReLU()\n",
|
357 |
+
" )\n",
|
358 |
+
" )\n",
|
359 |
+
" (conv2d): Conv2d(96, 256, kernel_size=(1, 1), stride=(1, 1))\n",
|
360 |
+
" (relu): ReLU()\n",
|
361 |
+
" )\n",
|
362 |
+
" (3): Block35(\n",
|
363 |
+
" (branch0): BasicConv2d(\n",
|
364 |
+
" (conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
365 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
366 |
+
" (relu): ReLU()\n",
|
367 |
+
" )\n",
|
368 |
+
" (branch1): Sequential(\n",
|
369 |
+
" (0): BasicConv2d(\n",
|
370 |
+
" (conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
371 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
372 |
+
" (relu): ReLU()\n",
|
373 |
+
" )\n",
|
374 |
+
" (1): BasicConv2d(\n",
|
375 |
+
" (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
376 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
377 |
+
" (relu): ReLU()\n",
|
378 |
+
" )\n",
|
379 |
+
" )\n",
|
380 |
+
" (branch2): Sequential(\n",
|
381 |
+
" (0): BasicConv2d(\n",
|
382 |
+
" (conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
383 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
384 |
+
" (relu): ReLU()\n",
|
385 |
+
" )\n",
|
386 |
+
" (1): BasicConv2d(\n",
|
387 |
+
" (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
388 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
389 |
+
" (relu): ReLU()\n",
|
390 |
+
" )\n",
|
391 |
+
" (2): BasicConv2d(\n",
|
392 |
+
" (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
393 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
394 |
+
" (relu): ReLU()\n",
|
395 |
+
" )\n",
|
396 |
+
" )\n",
|
397 |
+
" (conv2d): Conv2d(96, 256, kernel_size=(1, 1), stride=(1, 1))\n",
|
398 |
+
" (relu): ReLU()\n",
|
399 |
+
" )\n",
|
400 |
+
" (4): Block35(\n",
|
401 |
+
" (branch0): BasicConv2d(\n",
|
402 |
+
" (conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
403 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
404 |
+
" (relu): ReLU()\n",
|
405 |
+
" )\n",
|
406 |
+
" (branch1): Sequential(\n",
|
407 |
+
" (0): BasicConv2d(\n",
|
408 |
+
" (conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
409 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
410 |
+
" (relu): ReLU()\n",
|
411 |
+
" )\n",
|
412 |
+
" (1): BasicConv2d(\n",
|
413 |
+
" (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
414 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
415 |
+
" (relu): ReLU()\n",
|
416 |
+
" )\n",
|
417 |
+
" )\n",
|
418 |
+
" (branch2): Sequential(\n",
|
419 |
+
" (0): BasicConv2d(\n",
|
420 |
+
" (conv): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
421 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
422 |
+
" (relu): ReLU()\n",
|
423 |
+
" )\n",
|
424 |
+
" (1): BasicConv2d(\n",
|
425 |
+
" (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
426 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
427 |
+
" (relu): ReLU()\n",
|
428 |
+
" )\n",
|
429 |
+
" (2): BasicConv2d(\n",
|
430 |
+
" (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
431 |
+
" (bn): BatchNorm2d(32, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
432 |
+
" (relu): ReLU()\n",
|
433 |
+
" )\n",
|
434 |
+
" )\n",
|
435 |
+
" (conv2d): Conv2d(96, 256, kernel_size=(1, 1), stride=(1, 1))\n",
|
436 |
+
" (relu): ReLU()\n",
|
437 |
+
" )\n",
|
438 |
+
" )\n",
|
439 |
+
" (mixed_6a): Mixed_6a(\n",
|
440 |
+
" (branch0): BasicConv2d(\n",
|
441 |
+
" (conv): Conv2d(256, 384, kernel_size=(3, 3), stride=(2, 2), bias=False)\n",
|
442 |
+
" (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
443 |
+
" (relu): ReLU()\n",
|
444 |
+
" )\n",
|
445 |
+
" (branch1): Sequential(\n",
|
446 |
+
" (0): BasicConv2d(\n",
|
447 |
+
" (conv): Conv2d(256, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
448 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
449 |
+
" (relu): ReLU()\n",
|
450 |
+
" )\n",
|
451 |
+
" (1): BasicConv2d(\n",
|
452 |
+
" (conv): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
453 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
454 |
+
" (relu): ReLU()\n",
|
455 |
+
" )\n",
|
456 |
+
" (2): BasicConv2d(\n",
|
457 |
+
" (conv): Conv2d(192, 256, kernel_size=(3, 3), stride=(2, 2), bias=False)\n",
|
458 |
+
" (bn): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
459 |
+
" (relu): ReLU()\n",
|
460 |
+
" )\n",
|
461 |
+
" )\n",
|
462 |
+
" (branch2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
|
463 |
+
" )\n",
|
464 |
+
" (repeat_2): Sequential(\n",
|
465 |
+
" (0): Block17(\n",
|
466 |
+
" (branch0): BasicConv2d(\n",
|
467 |
+
" (conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
468 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
469 |
+
" (relu): ReLU()\n",
|
470 |
+
" )\n",
|
471 |
+
" (branch1): Sequential(\n",
|
472 |
+
" (0): BasicConv2d(\n",
|
473 |
+
" (conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
474 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
475 |
+
" (relu): ReLU()\n",
|
476 |
+
" )\n",
|
477 |
+
" (1): BasicConv2d(\n",
|
478 |
+
" (conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)\n",
|
479 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
480 |
+
" (relu): ReLU()\n",
|
481 |
+
" )\n",
|
482 |
+
" (2): BasicConv2d(\n",
|
483 |
+
" (conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)\n",
|
484 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
485 |
+
" (relu): ReLU()\n",
|
486 |
+
" )\n",
|
487 |
+
" )\n",
|
488 |
+
" (conv2d): Conv2d(256, 896, kernel_size=(1, 1), stride=(1, 1))\n",
|
489 |
+
" (relu): ReLU()\n",
|
490 |
+
" )\n",
|
491 |
+
" (1): Block17(\n",
|
492 |
+
" (branch0): BasicConv2d(\n",
|
493 |
+
" (conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
494 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
495 |
+
" (relu): ReLU()\n",
|
496 |
+
" )\n",
|
497 |
+
" (branch1): Sequential(\n",
|
498 |
+
" (0): BasicConv2d(\n",
|
499 |
+
" (conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
500 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
501 |
+
" (relu): ReLU()\n",
|
502 |
+
" )\n",
|
503 |
+
" (1): BasicConv2d(\n",
|
504 |
+
" (conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)\n",
|
505 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
506 |
+
" (relu): ReLU()\n",
|
507 |
+
" )\n",
|
508 |
+
" (2): BasicConv2d(\n",
|
509 |
+
" (conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)\n",
|
510 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
511 |
+
" (relu): ReLU()\n",
|
512 |
+
" )\n",
|
513 |
+
" )\n",
|
514 |
+
" (conv2d): Conv2d(256, 896, kernel_size=(1, 1), stride=(1, 1))\n",
|
515 |
+
" (relu): ReLU()\n",
|
516 |
+
" )\n",
|
517 |
+
" (2): Block17(\n",
|
518 |
+
" (branch0): BasicConv2d(\n",
|
519 |
+
" (conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
520 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
521 |
+
" (relu): ReLU()\n",
|
522 |
+
" )\n",
|
523 |
+
" (branch1): Sequential(\n",
|
524 |
+
" (0): BasicConv2d(\n",
|
525 |
+
" (conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
526 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
527 |
+
" (relu): ReLU()\n",
|
528 |
+
" )\n",
|
529 |
+
" (1): BasicConv2d(\n",
|
530 |
+
" (conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)\n",
|
531 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
532 |
+
" (relu): ReLU()\n",
|
533 |
+
" )\n",
|
534 |
+
" (2): BasicConv2d(\n",
|
535 |
+
" (conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)\n",
|
536 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
537 |
+
" (relu): ReLU()\n",
|
538 |
+
" )\n",
|
539 |
+
" )\n",
|
540 |
+
" (conv2d): Conv2d(256, 896, kernel_size=(1, 1), stride=(1, 1))\n",
|
541 |
+
" (relu): ReLU()\n",
|
542 |
+
" )\n",
|
543 |
+
" (3): Block17(\n",
|
544 |
+
" (branch0): BasicConv2d(\n",
|
545 |
+
" (conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
546 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
547 |
+
" (relu): ReLU()\n",
|
548 |
+
" )\n",
|
549 |
+
" (branch1): Sequential(\n",
|
550 |
+
" (0): BasicConv2d(\n",
|
551 |
+
" (conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
552 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
553 |
+
" (relu): ReLU()\n",
|
554 |
+
" )\n",
|
555 |
+
" (1): BasicConv2d(\n",
|
556 |
+
" (conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)\n",
|
557 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
558 |
+
" (relu): ReLU()\n",
|
559 |
+
" )\n",
|
560 |
+
" (2): BasicConv2d(\n",
|
561 |
+
" (conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)\n",
|
562 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
563 |
+
" (relu): ReLU()\n",
|
564 |
+
" )\n",
|
565 |
+
" )\n",
|
566 |
+
" (conv2d): Conv2d(256, 896, kernel_size=(1, 1), stride=(1, 1))\n",
|
567 |
+
" (relu): ReLU()\n",
|
568 |
+
" )\n",
|
569 |
+
" (4): Block17(\n",
|
570 |
+
" (branch0): BasicConv2d(\n",
|
571 |
+
" (conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
572 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
573 |
+
" (relu): ReLU()\n",
|
574 |
+
" )\n",
|
575 |
+
" (branch1): Sequential(\n",
|
576 |
+
" (0): BasicConv2d(\n",
|
577 |
+
" (conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
578 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
579 |
+
" (relu): ReLU()\n",
|
580 |
+
" )\n",
|
581 |
+
" (1): BasicConv2d(\n",
|
582 |
+
" (conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)\n",
|
583 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
584 |
+
" (relu): ReLU()\n",
|
585 |
+
" )\n",
|
586 |
+
" (2): BasicConv2d(\n",
|
587 |
+
" (conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)\n",
|
588 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
589 |
+
" (relu): ReLU()\n",
|
590 |
+
" )\n",
|
591 |
+
" )\n",
|
592 |
+
" (conv2d): Conv2d(256, 896, kernel_size=(1, 1), stride=(1, 1))\n",
|
593 |
+
" (relu): ReLU()\n",
|
594 |
+
" )\n",
|
595 |
+
" (5): Block17(\n",
|
596 |
+
" (branch0): BasicConv2d(\n",
|
597 |
+
" (conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
598 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
599 |
+
" (relu): ReLU()\n",
|
600 |
+
" )\n",
|
601 |
+
" (branch1): Sequential(\n",
|
602 |
+
" (0): BasicConv2d(\n",
|
603 |
+
" (conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
604 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
605 |
+
" (relu): ReLU()\n",
|
606 |
+
" )\n",
|
607 |
+
" (1): BasicConv2d(\n",
|
608 |
+
" (conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)\n",
|
609 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
610 |
+
" (relu): ReLU()\n",
|
611 |
+
" )\n",
|
612 |
+
" (2): BasicConv2d(\n",
|
613 |
+
" (conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)\n",
|
614 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
615 |
+
" (relu): ReLU()\n",
|
616 |
+
" )\n",
|
617 |
+
" )\n",
|
618 |
+
" (conv2d): Conv2d(256, 896, kernel_size=(1, 1), stride=(1, 1))\n",
|
619 |
+
" (relu): ReLU()\n",
|
620 |
+
" )\n",
|
621 |
+
" (6): Block17(\n",
|
622 |
+
" (branch0): BasicConv2d(\n",
|
623 |
+
" (conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
624 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
625 |
+
" (relu): ReLU()\n",
|
626 |
+
" )\n",
|
627 |
+
" (branch1): Sequential(\n",
|
628 |
+
" (0): BasicConv2d(\n",
|
629 |
+
" (conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
630 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
631 |
+
" (relu): ReLU()\n",
|
632 |
+
" )\n",
|
633 |
+
" (1): BasicConv2d(\n",
|
634 |
+
" (conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)\n",
|
635 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
636 |
+
" (relu): ReLU()\n",
|
637 |
+
" )\n",
|
638 |
+
" (2): BasicConv2d(\n",
|
639 |
+
" (conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)\n",
|
640 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
641 |
+
" (relu): ReLU()\n",
|
642 |
+
" )\n",
|
643 |
+
" )\n",
|
644 |
+
" (conv2d): Conv2d(256, 896, kernel_size=(1, 1), stride=(1, 1))\n",
|
645 |
+
" (relu): ReLU()\n",
|
646 |
+
" )\n",
|
647 |
+
" (7): Block17(\n",
|
648 |
+
" (branch0): BasicConv2d(\n",
|
649 |
+
" (conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
650 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
651 |
+
" (relu): ReLU()\n",
|
652 |
+
" )\n",
|
653 |
+
" (branch1): Sequential(\n",
|
654 |
+
" (0): BasicConv2d(\n",
|
655 |
+
" (conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
656 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
657 |
+
" (relu): ReLU()\n",
|
658 |
+
" )\n",
|
659 |
+
" (1): BasicConv2d(\n",
|
660 |
+
" (conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)\n",
|
661 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
662 |
+
" (relu): ReLU()\n",
|
663 |
+
" )\n",
|
664 |
+
" (2): BasicConv2d(\n",
|
665 |
+
" (conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)\n",
|
666 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
667 |
+
" (relu): ReLU()\n",
|
668 |
+
" )\n",
|
669 |
+
" )\n",
|
670 |
+
" (conv2d): Conv2d(256, 896, kernel_size=(1, 1), stride=(1, 1))\n",
|
671 |
+
" (relu): ReLU()\n",
|
672 |
+
" )\n",
|
673 |
+
" (8): Block17(\n",
|
674 |
+
" (branch0): BasicConv2d(\n",
|
675 |
+
" (conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
676 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
677 |
+
" (relu): ReLU()\n",
|
678 |
+
" )\n",
|
679 |
+
" (branch1): Sequential(\n",
|
680 |
+
" (0): BasicConv2d(\n",
|
681 |
+
" (conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
682 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
683 |
+
" (relu): ReLU()\n",
|
684 |
+
" )\n",
|
685 |
+
" (1): BasicConv2d(\n",
|
686 |
+
" (conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)\n",
|
687 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
688 |
+
" (relu): ReLU()\n",
|
689 |
+
" )\n",
|
690 |
+
" (2): BasicConv2d(\n",
|
691 |
+
" (conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)\n",
|
692 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
693 |
+
" (relu): ReLU()\n",
|
694 |
+
" )\n",
|
695 |
+
" )\n",
|
696 |
+
" (conv2d): Conv2d(256, 896, kernel_size=(1, 1), stride=(1, 1))\n",
|
697 |
+
" (relu): ReLU()\n",
|
698 |
+
" )\n",
|
699 |
+
" (9): Block17(\n",
|
700 |
+
" (branch0): BasicConv2d(\n",
|
701 |
+
" (conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
702 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
703 |
+
" (relu): ReLU()\n",
|
704 |
+
" )\n",
|
705 |
+
" (branch1): Sequential(\n",
|
706 |
+
" (0): BasicConv2d(\n",
|
707 |
+
" (conv): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
708 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
709 |
+
" (relu): ReLU()\n",
|
710 |
+
" )\n",
|
711 |
+
" (1): BasicConv2d(\n",
|
712 |
+
" (conv): Conv2d(128, 128, kernel_size=(1, 7), stride=(1, 1), padding=(0, 3), bias=False)\n",
|
713 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
714 |
+
" (relu): ReLU()\n",
|
715 |
+
" )\n",
|
716 |
+
" (2): BasicConv2d(\n",
|
717 |
+
" (conv): Conv2d(128, 128, kernel_size=(7, 1), stride=(1, 1), padding=(3, 0), bias=False)\n",
|
718 |
+
" (bn): BatchNorm2d(128, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
719 |
+
" (relu): ReLU()\n",
|
720 |
+
" )\n",
|
721 |
+
" )\n",
|
722 |
+
" (conv2d): Conv2d(256, 896, kernel_size=(1, 1), stride=(1, 1))\n",
|
723 |
+
" (relu): ReLU()\n",
|
724 |
+
" )\n",
|
725 |
+
" )\n",
|
726 |
+
" (mixed_7a): Mixed_7a(\n",
|
727 |
+
" (branch0): Sequential(\n",
|
728 |
+
" (0): BasicConv2d(\n",
|
729 |
+
" (conv): Conv2d(896, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
730 |
+
" (bn): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
731 |
+
" (relu): ReLU()\n",
|
732 |
+
" )\n",
|
733 |
+
" (1): BasicConv2d(\n",
|
734 |
+
" (conv): Conv2d(256, 384, kernel_size=(3, 3), stride=(2, 2), bias=False)\n",
|
735 |
+
" (bn): BatchNorm2d(384, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
736 |
+
" (relu): ReLU()\n",
|
737 |
+
" )\n",
|
738 |
+
" )\n",
|
739 |
+
" (branch1): Sequential(\n",
|
740 |
+
" (0): BasicConv2d(\n",
|
741 |
+
" (conv): Conv2d(896, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
742 |
+
" (bn): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
743 |
+
" (relu): ReLU()\n",
|
744 |
+
" )\n",
|
745 |
+
" (1): BasicConv2d(\n",
|
746 |
+
" (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), bias=False)\n",
|
747 |
+
" (bn): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
748 |
+
" (relu): ReLU()\n",
|
749 |
+
" )\n",
|
750 |
+
" )\n",
|
751 |
+
" (branch2): Sequential(\n",
|
752 |
+
" (0): BasicConv2d(\n",
|
753 |
+
" (conv): Conv2d(896, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
754 |
+
" (bn): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
755 |
+
" (relu): ReLU()\n",
|
756 |
+
" )\n",
|
757 |
+
" (1): BasicConv2d(\n",
|
758 |
+
" (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
|
759 |
+
" (bn): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
760 |
+
" (relu): ReLU()\n",
|
761 |
+
" )\n",
|
762 |
+
" (2): BasicConv2d(\n",
|
763 |
+
" (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), bias=False)\n",
|
764 |
+
" (bn): BatchNorm2d(256, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
765 |
+
" (relu): ReLU()\n",
|
766 |
+
" )\n",
|
767 |
+
" )\n",
|
768 |
+
" (branch3): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)\n",
|
769 |
+
" )\n",
|
770 |
+
" (repeat_3): Sequential(\n",
|
771 |
+
" (0): Block8(\n",
|
772 |
+
" (branch0): BasicConv2d(\n",
|
773 |
+
" (conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
774 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
775 |
+
" (relu): ReLU()\n",
|
776 |
+
" )\n",
|
777 |
+
" (branch1): Sequential(\n",
|
778 |
+
" (0): BasicConv2d(\n",
|
779 |
+
" (conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
780 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
781 |
+
" (relu): ReLU()\n",
|
782 |
+
" )\n",
|
783 |
+
" (1): BasicConv2d(\n",
|
784 |
+
" (conv): Conv2d(192, 192, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)\n",
|
785 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
786 |
+
" (relu): ReLU()\n",
|
787 |
+
" )\n",
|
788 |
+
" (2): BasicConv2d(\n",
|
789 |
+
" (conv): Conv2d(192, 192, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)\n",
|
790 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
791 |
+
" (relu): ReLU()\n",
|
792 |
+
" )\n",
|
793 |
+
" )\n",
|
794 |
+
" (conv2d): Conv2d(384, 1792, kernel_size=(1, 1), stride=(1, 1))\n",
|
795 |
+
" (relu): ReLU()\n",
|
796 |
+
" )\n",
|
797 |
+
" (1): Block8(\n",
|
798 |
+
" (branch0): BasicConv2d(\n",
|
799 |
+
" (conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
800 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
801 |
+
" (relu): ReLU()\n",
|
802 |
+
" )\n",
|
803 |
+
" (branch1): Sequential(\n",
|
804 |
+
" (0): BasicConv2d(\n",
|
805 |
+
" (conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
806 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
807 |
+
" (relu): ReLU()\n",
|
808 |
+
" )\n",
|
809 |
+
" (1): BasicConv2d(\n",
|
810 |
+
" (conv): Conv2d(192, 192, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)\n",
|
811 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
812 |
+
" (relu): ReLU()\n",
|
813 |
+
" )\n",
|
814 |
+
" (2): BasicConv2d(\n",
|
815 |
+
" (conv): Conv2d(192, 192, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)\n",
|
816 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
817 |
+
" (relu): ReLU()\n",
|
818 |
+
" )\n",
|
819 |
+
" )\n",
|
820 |
+
" (conv2d): Conv2d(384, 1792, kernel_size=(1, 1), stride=(1, 1))\n",
|
821 |
+
" (relu): ReLU()\n",
|
822 |
+
" )\n",
|
823 |
+
" (2): Block8(\n",
|
824 |
+
" (branch0): BasicConv2d(\n",
|
825 |
+
" (conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
826 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
827 |
+
" (relu): ReLU()\n",
|
828 |
+
" )\n",
|
829 |
+
" (branch1): Sequential(\n",
|
830 |
+
" (0): BasicConv2d(\n",
|
831 |
+
" (conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
832 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
833 |
+
" (relu): ReLU()\n",
|
834 |
+
" )\n",
|
835 |
+
" (1): BasicConv2d(\n",
|
836 |
+
" (conv): Conv2d(192, 192, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)\n",
|
837 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
838 |
+
" (relu): ReLU()\n",
|
839 |
+
" )\n",
|
840 |
+
" (2): BasicConv2d(\n",
|
841 |
+
" (conv): Conv2d(192, 192, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)\n",
|
842 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
843 |
+
" (relu): ReLU()\n",
|
844 |
+
" )\n",
|
845 |
+
" )\n",
|
846 |
+
" (conv2d): Conv2d(384, 1792, kernel_size=(1, 1), stride=(1, 1))\n",
|
847 |
+
" (relu): ReLU()\n",
|
848 |
+
" )\n",
|
849 |
+
" (3): Block8(\n",
|
850 |
+
" (branch0): BasicConv2d(\n",
|
851 |
+
" (conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
852 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
853 |
+
" (relu): ReLU()\n",
|
854 |
+
" )\n",
|
855 |
+
" (branch1): Sequential(\n",
|
856 |
+
" (0): BasicConv2d(\n",
|
857 |
+
" (conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
858 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
859 |
+
" (relu): ReLU()\n",
|
860 |
+
" )\n",
|
861 |
+
" (1): BasicConv2d(\n",
|
862 |
+
" (conv): Conv2d(192, 192, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)\n",
|
863 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
864 |
+
" (relu): ReLU()\n",
|
865 |
+
" )\n",
|
866 |
+
" (2): BasicConv2d(\n",
|
867 |
+
" (conv): Conv2d(192, 192, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)\n",
|
868 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
869 |
+
" (relu): ReLU()\n",
|
870 |
+
" )\n",
|
871 |
+
" )\n",
|
872 |
+
" (conv2d): Conv2d(384, 1792, kernel_size=(1, 1), stride=(1, 1))\n",
|
873 |
+
" (relu): ReLU()\n",
|
874 |
+
" )\n",
|
875 |
+
" (4): Block8(\n",
|
876 |
+
" (branch0): BasicConv2d(\n",
|
877 |
+
" (conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
878 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
879 |
+
" (relu): ReLU()\n",
|
880 |
+
" )\n",
|
881 |
+
" (branch1): Sequential(\n",
|
882 |
+
" (0): BasicConv2d(\n",
|
883 |
+
" (conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
884 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
885 |
+
" (relu): ReLU()\n",
|
886 |
+
" )\n",
|
887 |
+
" (1): BasicConv2d(\n",
|
888 |
+
" (conv): Conv2d(192, 192, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)\n",
|
889 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
890 |
+
" (relu): ReLU()\n",
|
891 |
+
" )\n",
|
892 |
+
" (2): BasicConv2d(\n",
|
893 |
+
" (conv): Conv2d(192, 192, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)\n",
|
894 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
895 |
+
" (relu): ReLU()\n",
|
896 |
+
" )\n",
|
897 |
+
" )\n",
|
898 |
+
" (conv2d): Conv2d(384, 1792, kernel_size=(1, 1), stride=(1, 1))\n",
|
899 |
+
" (relu): ReLU()\n",
|
900 |
+
" )\n",
|
901 |
+
" )\n",
|
902 |
+
" (block8): Block8(\n",
|
903 |
+
" (branch0): BasicConv2d(\n",
|
904 |
+
" (conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
905 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
906 |
+
" (relu): ReLU()\n",
|
907 |
+
" )\n",
|
908 |
+
" (branch1): Sequential(\n",
|
909 |
+
" (0): BasicConv2d(\n",
|
910 |
+
" (conv): Conv2d(1792, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
|
911 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
912 |
+
" (relu): ReLU()\n",
|
913 |
+
" )\n",
|
914 |
+
" (1): BasicConv2d(\n",
|
915 |
+
" (conv): Conv2d(192, 192, kernel_size=(1, 3), stride=(1, 1), padding=(0, 1), bias=False)\n",
|
916 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
917 |
+
" (relu): ReLU()\n",
|
918 |
+
" )\n",
|
919 |
+
" (2): BasicConv2d(\n",
|
920 |
+
" (conv): Conv2d(192, 192, kernel_size=(3, 1), stride=(1, 1), padding=(1, 0), bias=False)\n",
|
921 |
+
" (bn): BatchNorm2d(192, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
922 |
+
" (relu): ReLU()\n",
|
923 |
+
" )\n",
|
924 |
+
" )\n",
|
925 |
+
" (conv2d): Conv2d(384, 1792, kernel_size=(1, 1), stride=(1, 1))\n",
|
926 |
+
" )\n",
|
927 |
+
" (avgpool_1a): AdaptiveAvgPool2d(output_size=1)\n",
|
928 |
+
" (dropout): Dropout(p=0.6, inplace=False)\n",
|
929 |
+
" (last_linear): Linear(in_features=1792, out_features=512, bias=False)\n",
|
930 |
+
" (last_bn): BatchNorm1d(512, eps=0.001, momentum=0.1, affine=True, track_running_stats=True)\n",
|
931 |
+
" (logits): Linear(in_features=512, out_features=1, bias=True)\n",
|
932 |
+
")"
|
933 |
+
]
|
934 |
+
},
|
935 |
+
"execution_count": 6,
|
936 |
+
"metadata": {},
|
937 |
+
"output_type": "execute_result"
|
938 |
+
}
|
939 |
+
],
|
940 |
+
"source": [
|
941 |
+
"model = InceptionResnetV1(\n",
|
942 |
+
" pretrained=\"vggface2\",\n",
|
943 |
+
" classify=True,\n",
|
944 |
+
" num_classes=1,\n",
|
945 |
+
" device=DEVICE\n",
|
946 |
+
")\n",
|
947 |
+
"\n",
|
948 |
+
"checkpoint = torch.load(\"resnetinceptionv1_epoch_32.pth\", map_location=torch.device('cpu'))\n",
|
949 |
+
"model.load_state_dict(checkpoint['model_state_dict'])\n",
|
950 |
+
"model.to(DEVICE)\n",
|
951 |
+
"model.eval()"
|
952 |
+
]
|
953 |
+
},
|
954 |
+
{
|
955 |
+
"cell_type": "markdown",
|
956 |
+
"id": "a499194a",
|
957 |
+
"metadata": {},
|
958 |
+
"source": [
|
959 |
+
"# Model Inference "
|
960 |
+
]
|
961 |
+
},
|
962 |
+
{
|
963 |
+
"cell_type": "code",
|
964 |
+
"execution_count": 8,
|
965 |
+
"id": "376e6cd6",
|
966 |
+
"metadata": {},
|
967 |
+
"outputs": [],
|
968 |
+
"source": [
|
969 |
+
"def predict(input_image:Image.Image):\n",
|
970 |
+
" \"\"\"Predict the label of the input_image\"\"\"\n",
|
971 |
+
" face = mtcnn(input_image)\n",
|
972 |
+
" if face is None:\n",
|
973 |
+
" raise Exception('No face detected')\n",
|
974 |
+
" face = face.unsqueeze(0) # add the batch dimension\n",
|
975 |
+
" face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False)\n",
|
976 |
+
" \n",
|
977 |
+
" # convert the face into a numpy array to be able to plot it\n",
|
978 |
+
" prev_face = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy()\n",
|
979 |
+
" prev_face = prev_face.astype('uint8')\n",
|
980 |
+
"\n",
|
981 |
+
" face = face.to(DEVICE)\n",
|
982 |
+
" face = face.to(torch.float32)\n",
|
983 |
+
" face = face / 255.0\n",
|
984 |
+
" face_image_to_plot = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy()\n",
|
985 |
+
"\n",
|
986 |
+
" target_layers=[model.block8.branch1[-1]]\n",
|
987 |
+
" use_cuda = True if torch.cuda.is_available() else False\n",
|
988 |
+
" cam = GradCAM(model=model, target_layers=target_layers, use_cuda=use_cuda)\n",
|
989 |
+
" targets = [ClassifierOutputTarget(0)]\n",
|
990 |
+
"\n",
|
991 |
+
" grayscale_cam = cam(input_tensor=face, targets=targets, eigen_smooth=True)\n",
|
992 |
+
" grayscale_cam = grayscale_cam[0, :]\n",
|
993 |
+
" visualization = show_cam_on_image(face_image_to_plot, grayscale_cam, use_rgb=True)\n",
|
994 |
+
" face_with_mask = cv2.addWeighted(prev_face, 1, visualization, 0.5, 0)\n",
|
995 |
+
"\n",
|
996 |
+
" with torch.no_grad():\n",
|
997 |
+
" output = torch.sigmoid(model(face).squeeze(0))\n",
|
998 |
+
" prediction = \"real\" if output.item() < 0.5 else \"fake\"\n",
|
999 |
+
" \n",
|
1000 |
+
" real_prediction = 1 - output.item()\n",
|
1001 |
+
" fake_prediction = output.item()\n",
|
1002 |
+
" \n",
|
1003 |
+
" confidences = {\n",
|
1004 |
+
" 'real': real_prediction,\n",
|
1005 |
+
" 'fake': fake_prediction\n",
|
1006 |
+
" }\n",
|
1007 |
+
" return confidences, face_with_mask\n"
|
1008 |
+
]
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"cell_type": "markdown",
|
1012 |
+
"id": "14f47b5a",
|
1013 |
+
"metadata": {},
|
1014 |
+
"source": [
|
1015 |
+
"# Gradio Interface"
|
1016 |
+
]
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"cell_type": "code",
|
1020 |
+
"execution_count": 9,
|
1021 |
+
"id": "d62177b5",
|
1022 |
+
"metadata": {},
|
1023 |
+
"outputs": [
|
1024 |
+
{
|
1025 |
+
"name": "stdout",
|
1026 |
+
"output_type": "stream",
|
1027 |
+
"text": [
|
1028 |
+
"Running on local URL: http://127.0.0.1:7860\n",
|
1029 |
+
"\n",
|
1030 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
1031 |
+
]
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"data": {
|
1035 |
+
"text/html": [
|
1036 |
+
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
1037 |
+
],
|
1038 |
+
"text/plain": [
|
1039 |
+
"<IPython.core.display.HTML object>"
|
1040 |
+
]
|
1041 |
+
},
|
1042 |
+
"metadata": {},
|
1043 |
+
"output_type": "display_data"
|
1044 |
+
}
|
1045 |
+
],
|
1046 |
+
"source": [
|
1047 |
+
"interface = gr.Interface(\n",
|
1048 |
+
" fn=predict,\n",
|
1049 |
+
" inputs=[\n",
|
1050 |
+
" gr.inputs.Image(label=\"Input Image\", type=\"pil\")\n",
|
1051 |
+
" ],\n",
|
1052 |
+
" outputs=[\n",
|
1053 |
+
" gr.outputs.Label(label=\"Class\"),\n",
|
1054 |
+
" gr.outputs.Image(label=\"Face with Explainability\", type=\"pil\")\n",
|
1055 |
+
" ],\n",
|
1056 |
+
").launch()"
|
1057 |
+
]
|
1058 |
+
},
|
1059 |
+
{
|
1060 |
+
"cell_type": "code",
|
1061 |
+
"execution_count": null,
|
1062 |
+
"id": "0c0b293c",
|
1063 |
+
"metadata": {},
|
1064 |
+
"outputs": [],
|
1065 |
+
"source": []
|
1066 |
+
}
|
1067 |
+
],
|
1068 |
+
"metadata": {
|
1069 |
+
"kernelspec": {
|
1070 |
+
"display_name": "Python 3 (ipykernel)",
|
1071 |
+
"language": "python",
|
1072 |
+
"name": "python3"
|
1073 |
+
},
|
1074 |
+
"language_info": {
|
1075 |
+
"codemirror_mode": {
|
1076 |
+
"name": "ipython",
|
1077 |
+
"version": 3
|
1078 |
+
},
|
1079 |
+
"file_extension": ".py",
|
1080 |
+
"mimetype": "text/x-python",
|
1081 |
+
"name": "python",
|
1082 |
+
"nbconvert_exporter": "python",
|
1083 |
+
"pygments_lexer": "ipython3",
|
1084 |
+
"version": "3.9.8"
|
1085 |
+
}
|
1086 |
+
},
|
1087 |
+
"nbformat": 4,
|
1088 |
+
"nbformat_minor": 5
|
1089 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
jupyter==1.0.0
|
2 |
+
gradio==3.23.0
|
3 |
+
Pillow==9.4.0
|
4 |
+
facenet-pytorch==2.5.2
|
5 |
+
torch==1.11.0
|
6 |
+
opencv-python==4.7.0.72
|
7 |
+
grad-cam==1.4.6
|