File size: 6,735 Bytes
1cc6224
 
49f8dca
1cc6224
 
 
 
 
9f5095c
1cc6224
 
6811eb5
1cc6224
9f5095c
ff9d83f
2533f60
bb20f00
 
8b6e76a
bb20f00
ff9d83f
1cc6224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f5095c
1cc6224
 
1f026bc
ff9d83f
 
aa226e5
ff9d83f
1cc6224
aa0ba9a
1cc6224
224f843
aa0ba9a
1cc6224
aa0ba9a
 
1cc6224
ff9d83f
 
 
 
 
6811eb5
ff9d83f
 
 
1cc6224
 
 
 
 
 
 
 
 
1f026bc
1cc6224
 
1f026bc
1cc6224
 
 
7958323
 
1cc6224
 
7195ebb
 
 
 
ec89e27
1cc6224
 
6811eb5
ec89e27
 
6811eb5
 
 
 
 
 
 
 
 
 
8ac93e4
 
 
 
 
6811eb5
 
c6f3aad
a20abf1
69ece5b
5685488
 
4133425
c6f3aad
e146202
bf787c8
2d3257f
 
 
 
 
 
 
 
 
82a7d64
b21e31a
1cc6224
a84f92e
0587614
f6faeb7
a1499a3
f6faeb7
 
 
a1499a3
 
 
5db66a2
 
 
 
 
 
 
cfb91f2
6811eb5
 
 
 
 
 
12ee1bd
1cc6224
 
6811eb5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai  
import os

os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt"  # Path to the file storing destress-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'

#openai.api_key = os.environ["OPENAI_API_KEY"]

system_message = "You are a comfort chatbot specialized in providing information on therapy, destressing activites, and student opportunities."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]
messages.append({
	"role": "system",
	"content": "Do not use Markdown Format. Do not include hashtags or asterisks"
})

# Attempt to load the necessary models and provide feedback on success or failure
try:
    retrieval_model = SentenceTransformer(retrieval_model_name)
    print("Models loaded successfully.")
except Exception as e:
    print(f"Failed to load models: {e}")

def load_and_preprocess_text(filename):
    """
    Load and preprocess text from a file, removing empty lines and stripping whitespace.
    """
    try:
        with open(filename, 'r', encoding='utf-8') as file:
            segments = [line.strip() for line in file if line.strip()]
        print("Text loaded and preprocessed successfully.")
        return segments
    except Exception as e:
        print(f"Failed to load or preprocess text: {e}")
        return []

segments = load_and_preprocess_text(filename)

def find_relevant_segment(user_query, segments):
    """
    Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
    This version finds the best match based on the content of the query.
    """
    try:
        # Lowercase the query for better matching
        lower_query = user_query.lower()
        
        # Encode the query and the segments
        query_embedding = retrieval_model.encode(lower_query)
        segment_embeddings = retrieval_model.encode(segments)
        
        # Compute cosine similarities between the query and the segments
        similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
        
        # Find the index of the most similar segment
        best_idx = similarities.argmax()
        
        # Return the most relevant segment
        return segments[best_idx]
    except Exception as e:
        print(f"Error in finding relevant segment: {e}")
        return ""

def generate_response(user_query, relevant_segment):
    """
    Generate a response emphasizing the bot's capability in providing therapy, destressing activites, and student opportunities information.
    """
    try:
        user_message = f"Here's the information on your request: {relevant_segment}"

        # Append user's message to messages list
        messages.append({"role": "user", "content": user_message})
        
        response = openai.ChatCompletion.create(
            model="gpt-4o",
            messages=messages,
            max_tokens=4000,
            temperature=0.5,
            top_p=1,
            frequency_penalty=0.5,
            presence_penalty=0.5,
        )
        
        # Extract the response text
        output_text = response['choices'][0]['message']['content'].strip()
        
        # Append assistant's message to messages list for context
        messages.append({"role": "assistant", "content": output_text})
        
        return output_text
        
    except Exception as e:
        print(f"Error in generating response: {e}")
        return f"Error in generating response: {e}"

def query_model(question):
    """
    Process a question, find relevant information, and generate a response.
    """
    if question == "":
        return "Welcome to CalmConnect! Ask me anything about destressing strategies or student opportunities. Feel free to talk to our online therapist!"
    relevant_segment = find_relevant_segment(question, segments)
    if not relevant_segment:
        return "Could not find specific information. Please refine your question or head to our resources page."
    response = generate_response(question, relevant_segment)
    return response



# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
<span style="color:#718355; font-size:24px; font-weight:bold;"> 🪷 Welcome to CalmConnect! 🪷</span>
"""

"""
## Your AI-driven assistant for destressing activities to unlock your inner calm.
"""



topics= """
### Feel Free to ask CalmBot (Our Therapist Bot) anything from the topics below!
- Arts and Crafts (When asking for arts and crafts ideas, state whether you have 15 min, 30 min, 45 min, 1 hour, 1 hour and a half, 2 hours, 2 hours and a half, 3 hours or greater)
- Destressing strategies (Breathing Exercises, stretches, etc.)
- Mental Health
- Identity (Sexual, Gender, etc.)
- Bullying
- Racism
- Relationships (Family, Friends, etc.)
- Abuse (Emotional, Physical, Sexual, Mental, etc.)
- Support Resources





"""




theme = gr.themes.Default(
    primary_hue="neutral",
    secondary_hue="neutral",
).set(
    background_fill_primary='#e3e9da',
    background_fill_primary_dark='#e3e9da',
    background_fill_secondary="#f8f1ea",
    background_fill_secondary_dark="#f8f1ea",
    border_color_accent="#f8f1ea",
    border_color_accent_dark="#e3e9da",
    border_color_accent_subdued="#f8f1ea",
    border_color_primary="#f8f1ea",
    block_border_color="#f8f1ea",
    button_primary_background_fill="#f8f1ea",
    button_primary_background_fill_dark="#f8f1ea"
)
    
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme=theme) as demo:

    gr.Markdown(welcome_message)  # Display the formatted welcome message
    
    with gr.Row():
        with gr.Column():
            gr.Markdown(topics)  # Show the topics on the left side
            gr.HTML(iframe)  # Embed the iframe on the left side
            gr.HTML(iframe2)  # Embed the iframe on the right side
        
           # Show the topics on the left side
        with gr.Row():
            with gr.Column():
                question = gr.Textbox(label="You", placeholder="What do you want to talk to CalmBot about?")
                answer = gr.Textbox(label="CalmBot's Response :D", placeholder="CalmBot will respond here..", interactive=False, lines=20)
                submit_button = gr.Button("Submit")
                submit_button.click(fn=query_model, inputs=question, outputs=answer)
        


demo.launch()





# Launch the Gradio app to allow user interaction
demo.launch(share=True)