File size: 5,731 Bytes
1cc6224 49f8dca 1cc6224 9f5095c 1cc6224 322c5a6 1cc6224 668fc29 ff9d83f 2533f60 bb20f00 8b6e76a bb20f00 ff9d83f 1cc6224 9f5095c 1cc6224 1f026bc ff9d83f aa226e5 ff9d83f 1cc6224 aa0ba9a 1cc6224 224f843 aa0ba9a 1cc6224 aa0ba9a 1cc6224 ff9d83f 6811eb5 ff9d83f 1cc6224 2a57139 1cc6224 1f026bc 1cc6224 355f184 7958323 5685488 4133425 c6f3aad e146202 bf787c8 2d3257f 82a7d64 b21e31a 1cc6224 a84f92e 0587614 f6faeb7 a1499a3 f6faeb7 ac9b979 e6311d7 9866141 a1499a3 5db66a2 cfb91f2 6811eb5 12ee1bd 1cc6224 6811eb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt" # Path to the file storing destress-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
# openai.api_key = os.environ["OPENAI_API_KEY"]
system_message = "You are a comfort chatbot specialized in providing information on destressing activities."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]
messages.append({
"role": "system",
"content": "Do not use Markdown Format. Do not include hashtags or asterisks"
})
# Attempt to load the necessary models and provide feedback on success or failure
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
"""
Load and preprocess text from a file, removing empty lines and stripping whitespace.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
"""
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
This version finds the best match based on the content of the query.
"""
try:
# Lowercase the query for better matching
lower_query = user_query.lower()
# Encode the query and the segments
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(segments)
# Compute cosine similarities between the query and the segments
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
# Find the index of the most similar segment
best_idx = similarities.argmax()
# Return the most relevant segment
return segments[best_idx]
except Exception as e:
print(f"Error in finding relevant segment: {e}")
return ""
def generate_response(user_query, relevant_segment):
"""
Generate a response emphasizing the bot's capability in providing therapy, destressing activites, and student opportunities information.
"""
try:
user_message = f"Here's the information on your request: {relevant_segment}"
# Append user's message to messages list
messages.append({"role": "user", "content": user_message})
response = openai.ChatCompletion.create(
model="gpt-4o",
messages=messages,
max_tokens=4000,
temperature=0.5,
top_p=1,
frequency_penalty=0.5,
presence_penalty=0.5,
)
# Extract the response text
output_text = response['choices'][0]['message']['content'].strip()
# Append assistant's message to messages list for context
messages.append({"role": "assistant", "content": output_text})
return output_text
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
"""
if question == "":
return "Welcome to CalmConnect's CalmBot! Ask me anything about destressing strategies and we'll provide you ways to unlock your inner calm!"
relevant_segment = find_relevant_segment(question, segments)
if not relevant_segment:
return "Could not find specific information. Please refine your question or head to our resources page."
response = generate_response(question, relevant_segment)
return response
welcome_message = ""
topics = ""
theme = gr.themes.Default(
primary_hue="neutral",
secondary_hue="neutral",
).set(
background_fill_primary='#e3e9da',
background_fill_primary_dark='#e3e9da',
background_fill_secondary="#f8f1ea",
background_fill_secondary_dark="#f8f1ea",
border_color_accent="#f8f1ea",
border_color_accent_dark="#e3e9da",
border_color_accent_subdued="#f8f1ea",
border_color_primary="#f8f1ea",
block_border_color="#f8f1ea",
button_primary_background_fill="#f8f1ea",
button_primary_background_fill_dark="#f8f1ea"
)
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme=theme) as demo:
gr.Markdown(welcome_message) # Display the formatted welcome message
with gr.Row():
with gr.Column(scale=0.8):
gr.Markdown(topics)
# Show the topics on the left side
with gr.Row():
with gr.Column():
question = gr.Textbox(label="You", placeholder="What do you want to talk to CalmBot about?")
answer = gr.Textbox(label="CalmBot's Response :D", placeholder="CalmBot will respond here..", interactive=False, lines=20)
submit_button = gr.Button("Submit")
submit_button.click(fn=query_model, inputs=question, outputs=answer)
demo.launch()
# Launch the Gradio app to allow user interaction
demo.launch(share=True) |