File size: 5,731 Bytes
1cc6224
 
49f8dca
1cc6224
 
 
 
 
9f5095c
1cc6224
 
322c5a6
1cc6224
668fc29
ff9d83f
2533f60
bb20f00
 
8b6e76a
bb20f00
ff9d83f
1cc6224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f5095c
1cc6224
 
1f026bc
ff9d83f
 
aa226e5
ff9d83f
1cc6224
aa0ba9a
1cc6224
224f843
aa0ba9a
1cc6224
aa0ba9a
 
1cc6224
ff9d83f
 
 
 
 
6811eb5
ff9d83f
 
 
1cc6224
 
 
 
 
 
 
 
 
2a57139
1cc6224
 
1f026bc
1cc6224
 
 
355f184
 
7958323
5685488
 
4133425
c6f3aad
e146202
bf787c8
2d3257f
 
 
 
 
 
 
 
 
82a7d64
b21e31a
1cc6224
a84f92e
0587614
f6faeb7
a1499a3
f6faeb7
ac9b979
e6311d7
9866141
a1499a3
5db66a2
 
 
 
 
 
 
cfb91f2
6811eb5
 
 
 
 
 
12ee1bd
1cc6224
 
6811eb5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import openai  
import os

os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_topic_details.txt"  # Path to the file storing destress-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'

# openai.api_key = os.environ["OPENAI_API_KEY"]

system_message = "You are a comfort chatbot specialized in providing information on destressing activities."
# Initial system message to set the behavior of the assistant
messages = [{"role": "system", "content": system_message}]
messages.append({
	"role": "system",
	"content": "Do not use Markdown Format. Do not include hashtags or asterisks"
})

# Attempt to load the necessary models and provide feedback on success or failure
try:
    retrieval_model = SentenceTransformer(retrieval_model_name)
    print("Models loaded successfully.")
except Exception as e:
    print(f"Failed to load models: {e}")

def load_and_preprocess_text(filename):
    """
    Load and preprocess text from a file, removing empty lines and stripping whitespace.
    """
    try:
        with open(filename, 'r', encoding='utf-8') as file:
            segments = [line.strip() for line in file if line.strip()]
        print("Text loaded and preprocessed successfully.")
        return segments
    except Exception as e:
        print(f"Failed to load or preprocess text: {e}")
        return []

segments = load_and_preprocess_text(filename)

def find_relevant_segment(user_query, segments):
    """
    Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
    This version finds the best match based on the content of the query.
    """
    try:
        # Lowercase the query for better matching
        lower_query = user_query.lower()
        
        # Encode the query and the segments
        query_embedding = retrieval_model.encode(lower_query)
        segment_embeddings = retrieval_model.encode(segments)
        
        # Compute cosine similarities between the query and the segments
        similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
        
        # Find the index of the most similar segment
        best_idx = similarities.argmax()
        
        # Return the most relevant segment
        return segments[best_idx]
    except Exception as e:
        print(f"Error in finding relevant segment: {e}")
        return ""

def generate_response(user_query, relevant_segment):
    """
    Generate a response emphasizing the bot's capability in providing therapy, destressing activites, and student opportunities information.
    """
    try:
        user_message = f"Here's the information on your request: {relevant_segment}"

        # Append user's message to messages list
        messages.append({"role": "user", "content": user_message})
        
        response = openai.ChatCompletion.create(
            model="gpt-4o",
            messages=messages,
            max_tokens=4000,
            temperature=0.5,
            top_p=1,
            frequency_penalty=0.5,
            presence_penalty=0.5,
        )
        
        # Extract the response text
        output_text = response['choices'][0]['message']['content'].strip()
        
        # Append assistant's message to messages list for context
        messages.append({"role": "assistant", "content": output_text})
        
        return output_text
        
    except Exception as e:
        print(f"Error in generating response: {e}")
        return f"Error in generating response: {e}"

def query_model(question):
    """
    Process a question, find relevant information, and generate a response.
    """
    if question == "":
        return "Welcome to CalmConnect's CalmBot! Ask me anything about destressing strategies and we'll provide you ways to unlock your inner calm!"
    relevant_segment = find_relevant_segment(question, segments)
    if not relevant_segment:
        return "Could not find specific information. Please refine your question or head to our resources page."
    response = generate_response(question, relevant_segment)
    return response

welcome_message = ""
topics = ""

theme = gr.themes.Default(
    primary_hue="neutral",
    secondary_hue="neutral",
).set(
    background_fill_primary='#e3e9da',
    background_fill_primary_dark='#e3e9da',
    background_fill_secondary="#f8f1ea",
    background_fill_secondary_dark="#f8f1ea",
    border_color_accent="#f8f1ea",
    border_color_accent_dark="#e3e9da",
    border_color_accent_subdued="#f8f1ea",
    border_color_primary="#f8f1ea",
    block_border_color="#f8f1ea",
    button_primary_background_fill="#f8f1ea",
    button_primary_background_fill_dark="#f8f1ea"
)
    
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme=theme) as demo:

    gr.Markdown(welcome_message)  # Display the formatted welcome message
    
    with gr.Row():
        with gr.Column(scale=0.8):
            gr.Markdown(topics)
          
        
           # Show the topics on the left side
        with gr.Row():
            with gr.Column():
                question = gr.Textbox(label="You", placeholder="What do you want to talk to CalmBot about?")
                answer = gr.Textbox(label="CalmBot's Response :D", placeholder="CalmBot will respond here..", interactive=False, lines=20)
                submit_button = gr.Button("Submit")
                submit_button.click(fn=query_model, inputs=question, outputs=answer)
        


demo.launch()





# Launch the Gradio app to allow user interaction
demo.launch(share=True)