Spaces:
Running
Running
ciover2024
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from diffusers import StableDiffusionInpaintPipeline
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
import os
|
8 |
+
import shutil
|
9 |
+
from gradio_client import Client, handle_file
|
10 |
+
|
11 |
+
# Load the model once globally to avoid repeated loading
|
12 |
+
def load_inpainting_model():
|
13 |
+
model_path = "uberRealisticPornMerge_v23Inpainting.safetensors"
|
14 |
+
device = "cpu" # Explicitly use CPU
|
15 |
+
pipe = StableDiffusionInpaintPipeline.from_single_file(
|
16 |
+
model_path,
|
17 |
+
torch_dtype=torch.float32, # Use float32 for CPU
|
18 |
+
safety_checker=None
|
19 |
+
).to(device)
|
20 |
+
return pipe
|
21 |
+
|
22 |
+
# Preload the model once
|
23 |
+
inpaint_pipeline = load_inpainting_model()
|
24 |
+
|
25 |
+
# Function to resize image (simpler interpolation method for speed)
|
26 |
+
def resize_to_match(input_image, output_image):
|
27 |
+
return output_image.resize(input_image.size, Image.BILINEAR) # Use BILINEAR for faster resizing
|
28 |
+
|
29 |
+
# Function to generate the mask using Florence SAM Masking API (Replicate)
|
30 |
+
def generate_mask(image_path, text_prompt="clothing"):
|
31 |
+
client_sam = Client("SkalskiP/florence-sam-masking")
|
32 |
+
mask_result = client_sam.predict(
|
33 |
+
image_input=handle_file(image_path), # Provide your image path here
|
34 |
+
text_input=text_prompt, # Use "clothing" as the prompt
|
35 |
+
api_name="/process_image"
|
36 |
+
)
|
37 |
+
return mask_result # This is the local path to the generated mask
|
38 |
+
|
39 |
+
# Save the generated mask
|
40 |
+
def save_mask(mask_local_path, save_path="generated_mask.png"):
|
41 |
+
try:
|
42 |
+
shutil.copy(mask_local_path, save_path)
|
43 |
+
except Exception as e:
|
44 |
+
print(f"Failed to save the mask: {e}")
|
45 |
+
|
46 |
+
# Function to perform inpainting
|
47 |
+
def inpaint_image(input_image, mask_image):
|
48 |
+
prompt = "undress, naked"
|
49 |
+
result = inpaint_pipeline(prompt=prompt, image=input_image, mask_image=mask_image)
|
50 |
+
inpainted_image = result.images[0]
|
51 |
+
inpainted_image = resize_to_match(input_image, inpainted_image)
|
52 |
+
return inpainted_image
|
53 |
+
|
54 |
+
# Function to process input image and mask
|
55 |
+
def process_image(input_image):
|
56 |
+
# Save the input image temporarily to process with Replicate
|
57 |
+
input_image_path = "temp_input_image.png"
|
58 |
+
input_image.save(input_image_path)
|
59 |
+
|
60 |
+
# Generate the mask using Florence SAM API
|
61 |
+
mask_local_path = generate_mask(image_path=input_image_path)
|
62 |
+
|
63 |
+
# Save the generated mask
|
64 |
+
mask_image_path = "generated_mask.png"
|
65 |
+
save_mask(mask_local_path, save_path=mask_image_path)
|
66 |
+
|
67 |
+
# Open the mask image and perform inpainting
|
68 |
+
mask_image = Image.open(mask_image_path)
|
69 |
+
result_image = inpaint_image(input_image, mask_image)
|
70 |
+
|
71 |
+
# Clean up temporary files
|
72 |
+
os.remove(input_image_path)
|
73 |
+
os.remove(mask_image_path)
|
74 |
+
|
75 |
+
return result_image
|
76 |
+
|
77 |
+
# Define Gradio interface using Blocks API
|
78 |
+
with gr.Blocks() as demo:
|
79 |
+
with gr.Row():
|
80 |
+
input_image = gr.Image(label="Upload Input Image", type="pil")
|
81 |
+
output_image = gr.Image(type="pil", label="Output Image")
|
82 |
+
|
83 |
+
# Button to trigger the process
|
84 |
+
with gr.Row():
|
85 |
+
btn = gr.Button("Run Inpainting")
|
86 |
+
|
87 |
+
# Function to run when button is clicked
|
88 |
+
btn.click(fn=process_image, inputs=[input_image], outputs=output_image)
|
89 |
+
|
90 |
+
# Launch the Gradio app
|
91 |
+
demo.launch(share=True)
|