Spaces:
Running
Running
ciover2024
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,24 @@
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
import torch
|
|
|
|
|
|
|
|
|
4 |
#import torch.nn.functional as F
|
5 |
#import torchvision
|
6 |
#import torchvision.transforms as T
|
|
|
|
|
7 |
from diffusers import StableDiffusionInpaintPipeline
|
8 |
import numpy as np
|
9 |
-
#import cv2
|
10 |
import os
|
11 |
import shutil
|
12 |
from gradio_client import Client, handle_file
|
13 |
|
14 |
# Load the model once globally to avoid repeated loading
|
15 |
def load_inpainting_model():
|
|
|
16 |
model_path = "uberRealisticPornMerge_urpmv13Inpainting.safetensors"
|
17 |
#model_path = "uberRealisticPornMerge_v23Inpainting.safetensors"
|
18 |
#model_path = "pornmasterFantasy_v4-inpainting.safetensors"
|
@@ -25,16 +31,48 @@ def load_inpainting_model():
|
|
25 |
).to(device)
|
26 |
return pipe
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
# Preload the model once
|
29 |
inpaint_pipeline = load_inpainting_model()
|
|
|
|
|
30 |
|
31 |
# Function to resize image (simpler interpolation method for speed)
|
32 |
def resize_to_match(input_image, output_image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
#torch_img = pil_to_torch(input_image)
|
34 |
#torch_img_scaled = F.interpolate(torch_img.unsqueeze(0),mode='trilinear').squeeze(0)
|
35 |
#output_image = torchvision.transforms.functional.to_pil_image(torch_img_scaled, mode=None)
|
36 |
-
#return output_image
|
37 |
-
return output_image.resize(input_image.size, Image.BICUBIC) # Use BILINEAR for faster resizing
|
38 |
|
39 |
# Function to generate the mask using Florence SAM Masking API (Replicate)
|
40 |
def generate_mask(image_path, text_prompt="clothing"):
|
@@ -58,7 +96,7 @@ def inpaint_image(input_image, mask_image):
|
|
58 |
prompt = "undress, naked"
|
59 |
result = inpaint_pipeline(prompt=prompt, image=input_image, mask_image=mask_image)
|
60 |
inpainted_image = result.images[0]
|
61 |
-
|
62 |
return inpainted_image
|
63 |
|
64 |
# Function to process input image and mask
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
import torch
|
4 |
+
from diffusers.utils import load_image
|
5 |
+
from diffusers import FluxControlNetModel
|
6 |
+
from diffusers.pipelines import FluxControlNetPipeline
|
7 |
+
|
8 |
#import torch.nn.functional as F
|
9 |
#import torchvision
|
10 |
#import torchvision.transforms as T
|
11 |
+
#import cv2
|
12 |
+
|
13 |
from diffusers import StableDiffusionInpaintPipeline
|
14 |
import numpy as np
|
|
|
15 |
import os
|
16 |
import shutil
|
17 |
from gradio_client import Client, handle_file
|
18 |
|
19 |
# Load the model once globally to avoid repeated loading
|
20 |
def load_inpainting_model():
|
21 |
+
# Load pipeline
|
22 |
model_path = "uberRealisticPornMerge_urpmv13Inpainting.safetensors"
|
23 |
#model_path = "uberRealisticPornMerge_v23Inpainting.safetensors"
|
24 |
#model_path = "pornmasterFantasy_v4-inpainting.safetensors"
|
|
|
31 |
).to(device)
|
32 |
return pipe
|
33 |
|
34 |
+
# Load the model once globally to avoid repeated loading
|
35 |
+
def load_upscaling_model():
|
36 |
+
# Load pipeline
|
37 |
+
device = "cpu" # Explicitly use CPU
|
38 |
+
controlnet = FluxControlNetModel.from_pretrained(
|
39 |
+
"jasperai/Flux.1-dev-Controlnet-Upscaler",
|
40 |
+
torch_dtype=torch.float32
|
41 |
+
)
|
42 |
+
pipe = FluxControlNetPipeline.from_pretrained(
|
43 |
+
"black-forest-labs/FLUX.1-dev",
|
44 |
+
controlnet=controlnet,
|
45 |
+
torch_dtype=torch.float32
|
46 |
+
).to(device)
|
47 |
+
return pipe
|
48 |
+
|
49 |
# Preload the model once
|
50 |
inpaint_pipeline = load_inpainting_model()
|
51 |
+
# Preload the model once
|
52 |
+
upscale_pipeline = load_upscaling_model()
|
53 |
|
54 |
# Function to resize image (simpler interpolation method for speed)
|
55 |
def resize_to_match(input_image, output_image):
|
56 |
+
|
57 |
+
w, h = output_image.size
|
58 |
+
control_image = output_image.resize((w * 4, h * 4))
|
59 |
+
|
60 |
+
scaled_image = pipe(
|
61 |
+
prompt="",
|
62 |
+
control_image=control_image,
|
63 |
+
controlnet_conditioning_scale=0.6,
|
64 |
+
num_inference_steps=28,
|
65 |
+
guidance_scale=3.5,
|
66 |
+
height=control_image.size[1],
|
67 |
+
width=control_image.size[0]
|
68 |
+
).images[0]
|
69 |
+
|
70 |
+
return scaled_image
|
71 |
+
|
72 |
#torch_img = pil_to_torch(input_image)
|
73 |
#torch_img_scaled = F.interpolate(torch_img.unsqueeze(0),mode='trilinear').squeeze(0)
|
74 |
#output_image = torchvision.transforms.functional.to_pil_image(torch_img_scaled, mode=None)
|
75 |
+
#return output_image.resize(input_image.size, Image.BICUBIC) # Use BILINEAR for faster resizing
|
|
|
76 |
|
77 |
# Function to generate the mask using Florence SAM Masking API (Replicate)
|
78 |
def generate_mask(image_path, text_prompt="clothing"):
|
|
|
96 |
prompt = "undress, naked"
|
97 |
result = inpaint_pipeline(prompt=prompt, image=input_image, mask_image=mask_image)
|
98 |
inpainted_image = result.images[0]
|
99 |
+
inpainted_image = resize_to_match(input_image, inpainted_image)
|
100 |
return inpainted_image
|
101 |
|
102 |
# Function to process input image and mask
|