ciover2024 commited on
Commit
f0b0540
·
verified ·
1 Parent(s): 6630dbc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -9
app.py CHANGED
@@ -32,9 +32,10 @@ import shutil
32
  from gradio_client import Client, handle_file
33
 
34
  # Load the model once globally to avoid repeated loading
 
35
  def load_inpainting_model():
36
  # Load pipeline
37
- model_path = "urpmv13Inpainting.safetensors"
38
  #model_path = "uberRealisticPornMerge_v23Inpainting.safetensors"
39
  #model_path = "pornmasterFantasy_v4-inpainting.safetensors"
40
  #model_path = "pornmasterAmateur_v6Vae-inpainting.safetensors"
@@ -45,7 +46,7 @@ def load_inpainting_model():
45
  safety_checker=None
46
  ).to(device)
47
  return pipe
48
-
49
  """
50
  # Load the model once globally to avoid repeated loading
51
  def load_upscaling_model():
@@ -65,7 +66,7 @@ def load_upscaling_model():
65
  """
66
 
67
  # Preload the model once
68
- inpaint_pipeline = load_inpainting_model()
69
  # Preload the model once
70
  #upscale_pipeline = load_upscaling_model()
71
 
@@ -95,7 +96,7 @@ def resize_to_match(input_image, output_image):
95
 
96
  # Function to generate the mask using Florence SAM Masking API (Replicate)
97
  def generate_mask(image_path, text_prompt="clothing"):
98
- client_sam = Client("SkalskiP/florence-sam-masking")
99
  mask_result = client_sam.predict(
100
  image_input=handle_file(image_path), # Provide your image path here
101
  text_input=text_prompt, # Use "clothing" as the prompt
@@ -121,11 +122,11 @@ def inpaint_image(input_image, mask_image):
121
  blurred_mask_image = inpaint_pipeline.mask_processor.blur(initial_mask_image,blur_factor=10)
122
  result = inpaint_pipeline(prompt=prompt, negative_prompt=negative_prompt, height=IMAGE_SIZE[0], width=IMAGE_SIZE[0], image=initial_input_image, mask_image=blurred_mask_image, padding_mask_crop=32)
123
  """
124
- blurred_mask_image = inpaint_pipeline.mask_processor.blur(mask_image,blur_factor=10)
125
- result = inpaint_pipeline(prompt=prompt, negative_prompt=negative_prompt, image=input_image, mask_image=blurred_mask_image, padding_mask_crop=10)
126
- inpainted_image = result.images[0]
127
  #inpainted_image = resize_to_match(input_image, inpainted_image)
128
- return inpainted_image
129
 
130
  # Function to process input image and mask
131
  def process_image(input_image):
@@ -135,7 +136,8 @@ def process_image(input_image):
135
 
136
  # Generate the mask using Florence SAM API
137
  mask_local_path = generate_mask(image_path=input_image_path)
138
-
 
139
  # Save the generated mask
140
  mask_image_path = "generated_mask.png"
141
  save_mask(mask_local_path, save_path=mask_image_path)
 
32
  from gradio_client import Client, handle_file
33
 
34
  # Load the model once globally to avoid repeated loading
35
+ """
36
  def load_inpainting_model():
37
  # Load pipeline
38
+ #model_path = "urpmv13Inpainting.safetensors"
39
  #model_path = "uberRealisticPornMerge_v23Inpainting.safetensors"
40
  #model_path = "pornmasterFantasy_v4-inpainting.safetensors"
41
  #model_path = "pornmasterAmateur_v6Vae-inpainting.safetensors"
 
46
  safety_checker=None
47
  ).to(device)
48
  return pipe
49
+ """
50
  """
51
  # Load the model once globally to avoid repeated loading
52
  def load_upscaling_model():
 
66
  """
67
 
68
  # Preload the model once
69
+ #inpaint_pipeline = load_inpainting_model()
70
  # Preload the model once
71
  #upscale_pipeline = load_upscaling_model()
72
 
 
96
 
97
  # Function to generate the mask using Florence SAM Masking API (Replicate)
98
  def generate_mask(image_path, text_prompt="clothing"):
99
+ client_sam = Client("SkalskiP/florence-sam")
100
  mask_result = client_sam.predict(
101
  image_input=handle_file(image_path), # Provide your image path here
102
  text_input=text_prompt, # Use "clothing" as the prompt
 
122
  blurred_mask_image = inpaint_pipeline.mask_processor.blur(initial_mask_image,blur_factor=10)
123
  result = inpaint_pipeline(prompt=prompt, negative_prompt=negative_prompt, height=IMAGE_SIZE[0], width=IMAGE_SIZE[0], image=initial_input_image, mask_image=blurred_mask_image, padding_mask_crop=32)
124
  """
125
+ #blurred_mask_image = inpaint_pipeline.mask_processor.blur(mask_image,blur_factor=10)
126
+ #result = inpaint_pipeline(prompt=prompt, negative_prompt=negative_prompt, image=input_image, mask_image=blurred_mask_image, padding_mask_crop=10)
127
+ #inpainted_image = result.images[0]
128
  #inpainted_image = resize_to_match(input_image, inpainted_image)
129
+ return mask_image
130
 
131
  # Function to process input image and mask
132
  def process_image(input_image):
 
136
 
137
  # Generate the mask using Florence SAM API
138
  mask_local_path = generate_mask(image_path=input_image_path)
139
+ mask_local_path1 = mask_local_path[0]
140
+
141
  # Save the generated mask
142
  mask_image_path = "generated_mask.png"
143
  save_mask(mask_local_path, save_path=mask_image_path)