Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ultralytics import YOLO
|
2 |
+
import cv2
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
def gap_det(img):
|
6 |
+
model = YOLO("best.pt")
|
7 |
+
input_image_path = img
|
8 |
+
results = model(input_image_path)
|
9 |
+
|
10 |
+
gap_up_count = 0
|
11 |
+
gap_down_count = 0
|
12 |
+
|
13 |
+
for result in results:
|
14 |
+
boxes = result.boxes.xyxy
|
15 |
+
classes = result.boxes.cls
|
16 |
+
confidences = result.boxes.conf
|
17 |
+
for cls in classes:
|
18 |
+
if cls == 0:
|
19 |
+
gap_down_count += 1
|
20 |
+
elif cls == 1:
|
21 |
+
gap_up_count += 1
|
22 |
+
annotated_image = result.plot()
|
23 |
+
output_image_path = "output_image.jpg"
|
24 |
+
cv2.imwrite(output_image_path, annotated_image)
|
25 |
+
annotated_image_rgb = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
26 |
+
return annotated_image_rgb, gap_up_count, gap_down_count
|
27 |
+
|
28 |
+
with gr.Blocks() as demo:
|
29 |
+
gr.Markdown("# GAP UP and GAP DOWN Detection")
|
30 |
+
gr.Markdown("Upload an image to detect GAP UP and GAP DOWN patterns in stock market candlestick charts.")
|
31 |
+
|
32 |
+
with gr.Row():
|
33 |
+
input_image = gr.Image(label="Upload Image", type="filepath")
|
34 |
+
output_image = gr.Image(label="Detected Image")
|
35 |
+
|
36 |
+
with gr.Row():
|
37 |
+
gap_up_output = gr.Textbox(label="GAP UP Count")
|
38 |
+
gap_down_output = gr.Textbox(label="GAP DOWN Count")
|
39 |
+
|
40 |
+
submit_button = gr.Button("Detect")
|
41 |
+
submit_button.click(
|
42 |
+
fn=gap_det,
|
43 |
+
inputs=input_image,
|
44 |
+
outputs=[output_image, gap_up_output, gap_down_output]
|
45 |
+
)
|
46 |
+
|
47 |
+
demo.launch()
|