cipherunhsiv commited on
Commit
36039f6
·
verified ·
1 Parent(s): 25c4e5f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -13
app.py CHANGED
@@ -1,8 +1,11 @@
1
- import pandas as pd
2
  import numpy as np
3
  from tensorflow.keras.models import load_model
4
  import gradio as gr
5
 
 
 
 
 
6
  action_map = {
7
  1: "Hand at rest",
8
  2: "Hand clenched in a fist",
@@ -12,13 +15,22 @@ action_map = {
12
  6: "Ulnar deviations",
13
  }
14
 
 
15
  def action(e1, e2, e3, e4, e5, e6, e7, e8):
16
- model = load_model('model6839.keras')
17
- input_data = np.array([[e1, e2, e3, e4, e5, e6, e7, e8]])
18
- prediction = model.predict(input_data)
19
- predicted_class = np.argmax(prediction, axis=-1)
20
- return action_map.get(predicted_class[0]+1, "Unknown action")
 
 
 
 
 
 
 
21
 
 
22
  inputs = [
23
  gr.Number(label="e1"),
24
  gr.Number(label="e2"),
@@ -30,26 +42,26 @@ inputs = [
30
  gr.Number(label="e8"),
31
  ]
32
 
 
33
  output = gr.Textbox(label="Prediction")
34
 
 
35
  examples = [
36
  [-2.00e-05, 1.00e-05, 2.20e-04, 1.80e-04, -1.50e-04, -5.00e-05, 1.00e-05, 0],
37
  [1.60e-04, -1.00e-04, -2.40e-04, 2.00e-04, 1.00e-04, -9.00e-05, -5.00e-05, -5.00e-05],
38
  [-1.00e-05, 1.00e-05, 1.00e-05, 0, -2.00e-05, 0, -3.00e-05, -3.00e-05],
39
  ]
40
 
41
- def func(e1, e2, e3, e4, e5, e6, e7, e8):
42
- return action(e1, e2, e3, e4, e5, e6, e7, e8)
43
-
44
  iface = gr.Interface(
45
- fn=func,
46
  inputs=inputs,
47
  outputs=output,
48
  title="ML Model Predictor",
49
  examples=examples,
50
- flagging_options=["Working", "Not Wotking"],
51
  description="Enter the 8 feature values to get a prediction."
52
  )
53
 
54
- #iface.launch(share=True, auth=('emg','emg123'), auth_message="Type in your <strong>login credentials</strong>")
55
- iface.launch(share=True)
 
 
1
  import numpy as np
2
  from tensorflow.keras.models import load_model
3
  import gradio as gr
4
 
5
+ # Load the saved .h5 model
6
+ model = load_model('model8346.h5')
7
+
8
+ # Define action mapping
9
  action_map = {
10
  1: "Hand at rest",
11
  2: "Hand clenched in a fist",
 
15
  6: "Ulnar deviations",
16
  }
17
 
18
+ # Function to process inputs and get a prediction
19
  def action(e1, e2, e3, e4, e5, e6, e7, e8):
20
+ # Duplicate each value 3 times to create a 24-length input
21
+ input_data = np.array([[e1, e1, e1, e2, e2, e2, e3, e3, e3,
22
+ e4, e4, e4, e5, e5, e5, e6, e6, e6,
23
+ e7, e7, e7, e8, e8, e8]])
24
+
25
+ # Get model prediction
26
+ prediction = model.predict(input_data)
27
+
28
+ # Get predicted class
29
+ predicted_class = np.argmax(prediction, axis=-1)
30
+
31
+ return action_map.get(predicted_class[0] + 1, "Unknown action")
32
 
33
+ # Define Gradio inputs
34
  inputs = [
35
  gr.Number(label="e1"),
36
  gr.Number(label="e2"),
 
42
  gr.Number(label="e8"),
43
  ]
44
 
45
+ # Define Gradio output
46
  output = gr.Textbox(label="Prediction")
47
 
48
+ # Example inputs (same as before)
49
  examples = [
50
  [-2.00e-05, 1.00e-05, 2.20e-04, 1.80e-04, -1.50e-04, -5.00e-05, 1.00e-05, 0],
51
  [1.60e-04, -1.00e-04, -2.40e-04, 2.00e-04, 1.00e-04, -9.00e-05, -5.00e-05, -5.00e-05],
52
  [-1.00e-05, 1.00e-05, 1.00e-05, 0, -2.00e-05, 0, -3.00e-05, -3.00e-05],
53
  ]
54
 
55
+ # Gradio interface
 
 
56
  iface = gr.Interface(
57
+ fn=action,
58
  inputs=inputs,
59
  outputs=output,
60
  title="ML Model Predictor",
61
  examples=examples,
62
+ flagging_options=["Working", "Not Working"],
63
  description="Enter the 8 feature values to get a prediction."
64
  )
65
 
66
+ # Launch Gradio UI
67
+ iface.launch(share=True, debug=True)