File size: 9,142 Bytes
b812afe
 
 
 
 
 
 
 
 
 
 
 
2257e84
 
 
 
b812afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2257e84
b812afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2257e84
 
 
b812afe
669a4a6
 
7a06b4f
b812afe
 
669a4a6
b812afe
 
 
 
 
 
669a4a6
b812afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669a4a6
b812afe
669a4a6
b812afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669a4a6
b812afe
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation, PillowWriter
import scipy.io.wavfile as wavfile

# Constants for sound generation
SAMPLE_RATE = 48000
COLUMN_DURATION = 1  # Duration of each column in seconds

# Mapping of matrix numbers to musical notes
notes = ["A", "A#", "B", "C", "C#", "D", "D#", "E", "F", "F#", "G", "G#"]
note_map = {
    2: "A", 3: "A#", 4: "B", 5: "C", 6: "C#", 7: "D", 8: "D#", 9: "E", 
    10: "F", 11: "F#", 12: "G", 13: "G#"
}

def generate_tone(note, duration):
    """Generates a tone for a specified note and duration."""
    frequency = 440 * 2 ** ((notes.index(note) - 9) / 12)
    t = np.linspace(0, duration, int(SAMPLE_RATE * duration), endpoint=False)
    return 0.5 * np.sin(2 * np.pi * frequency * t)

def get_matrix_audio(matrix):
    """Generate audio sequence for one matrix state."""
    audio_sequence = []
    
    for col in range(matrix.shape[1]):
        col_audio = np.zeros(0)
        for row in range(matrix.shape[0]):
            num = matrix[row, col]
            if num > 1:
                note = note_map.get(num, "A")
                tone = generate_tone(note, duration=COLUMN_DURATION / matrix.shape[0])
                col_audio = np.concatenate((col_audio, tone))
        
        audio_sequence.append(col_audio)
    
    return np.concatenate(audio_sequence)

class NumberSpreadSimulator:
    def __init__(self, initial_matrix):
        self.grid = np.array(initial_matrix, dtype=int)
        self.audio_frames = []
        self.original_numbers = self.find_original_numbers()
        self.initialize_audio()
        
    def find_original_numbers(self):
        """Find all original numbers in the initial matrix."""
        numbers = set()
        for row in range(self.grid.shape[0]):
            for col in range(self.grid.shape[1]):
                if self.grid[row, col] > 1:
                    numbers.add(self.grid[row, col])
        return list(numbers)
    
    def initialize_audio(self):
        """Generate audio for initial state and store it."""
        self.audio_frames.append(get_matrix_audio(self.grid))

    def find_original_number(self, current):
        """Find the original source number based on the current number."""
        closest = min(self.original_numbers, key=lambda x: abs(x - current))
        return closest
    
    def step(self):
        """Simulates a step in the matrix spread."""
        new_grid = np.zeros_like(self.grid)
        has_changes = False
        
        # Process each position in the grid
        for row in range(self.grid.shape[0]):
            for col in range(self.grid.shape[1]):
                current = self.grid[row, col]
                
                if current > 1:
                    has_changes = True
                    half = current // 2
                    
                    # Define potential target positions
                    targets = []
                    if current % 2 == 0:  # Even
                        if row > 0: targets.append((row - 1, col, half))
                        if col > 0: targets.append((row, col - 1, half))
                    else:  # Odd
                        if col > 0: targets.append((row, col - 1, half))
                        if row > 0: targets.append((row - 1, col, half))
                        if row > 0 and col > 0: targets.append((row - 1, col - 1, 1))
                    
                    # Process each target position
                    for target_row, target_col, value in targets:
                        if self.grid[target_row, target_col] == -1:
                            # If target is -1, replace with original number
                            new_grid[target_row, target_col] = self.find_original_number(current)
                        elif self.grid[target_row, target_col] == -2:
                            # If target is -2, double the incoming value
                            new_grid[target_row, target_col] = value * 2
                        elif self.grid[target_row, target_col] == -3:
                            # If target is -3, set to 0
                            new_grid[target_row, target_col] = 0
                        else:
                            new_grid[target_row, target_col] += value
                
                # Copy over any remaining special values
                if (self.grid[row, col] in [-1, -2, -3]) and new_grid[row, col] == 0:
                    new_grid[row, col] = self.grid[row, col]
        
        self.grid = new_grid
        if has_changes:
            self.audio_frames.append(get_matrix_audio(self.grid))
        
        return has_changes, self.grid

def create_animation(matrix):
    # Initialize simulator
    sim = NumberSpreadSimulator(matrix)
    
    # Determine matrix dimensions
    rows, cols = sim.grid.shape
    
    # Create figure and axis with dynamic limits
    fig, ax = plt.subplots(figsize=(10, 10))
    ax.set_xlim(-0.5, cols - 0.5)
    ax.set_ylim(-0.5, rows - 0.5)
    ax.set_title("Matrix Spread Visualization")
    
    # Initialize plot elements
    circles = []
    labels = []
    
    for i in range(rows):
        for j in range(cols):
            circle = plt.Circle((j, rows - 1 - i), 0.2, 
                              color='blue', 
                              fill=False)
            label = ax.text(j, rows - 1 - i, '', ha='center', va='center', fontsize=12)
            circles.append(circle)
            labels.append(label)
            ax.add_patch(circle)
    
    current_frame = [0]
    
    def update(frame):
        if current_frame[0] == 0:
            matrix = sim.grid
        else:
            has_changes, matrix = sim.step()
            if not has_changes:
                ani.event_source.stop()
                return circles + labels
        
        for i in range(rows):
            for j in range(cols):
                value = matrix[i, j]
                index = i * cols + j
                
                if value != 0:
                    circles[index].set_radius(0.1 + 0.1 * (abs(value) / 10))
                    if value == -1:
                        circles[index].set_facecolor('green')
                    elif value == -2:
                        circles[index].set_facecolor('purple')
                    elif value == -3:
                        circles[index].set_facecolor('red')
                    else:
                        circles[index].set_facecolor('orange')
                else:
                    circles[index].set_radius(0.1)
                    circles[index].set_facecolor('blue')
                labels[index].set_text(str(value) if value != 0 else '')
        
        current_frame[0] += 1
        return circles + labels
    
    # Estimate the number of frames needed
    max_steps = 100  # Set a reasonable limit for the number of steps
    ani = FuncAnimation(fig, update, frames=max_steps, interval=1000, blit=True, cache_frame_data=False)
    
    # Save the animation to a GIF file
    gif_path = "matrix_animation.gif"
    ani.save(gif_path, writer=PillowWriter(fps=1))
    plt.close(fig)
    
    return gif_path

def run_simulation(matrix_input):
    """
    Run the full simulation based on user-input matrix
    
    :param matrix_input: 2D list of integers representing the matrix
    :return: tuple of (audio_path, gif_path)
    """
    # Convert input to numpy array
    matrix = np.array(matrix_input, dtype=int)
    
    # Initialize simulator
    sim = NumberSpreadSimulator(matrix)
    
    # Run simulation until no more changes
    while True:
        has_changes, _ = sim.step()
        if not has_changes:
            break
    
    # Generate audio
    final_audio = np.concatenate(sim.audio_frames)
    final_audio = np.int16(final_audio * 32767)
    
    # Save audio
    audio_path = "matrix_sound.wav"
    wavfile.write(audio_path, SAMPLE_RATE, final_audio)
    
    # Create animation
    gif_path = create_animation(matrix)
    
    return audio_path, gif_path

# Gradio Interface
def create_gradio_interface():
    # Default initial matrix
    default_matrix = [
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 47]
    ]

    # Create Gradio interface
    iface = gr.Interface(
        fn=run_simulation,
        inputs=[
            gr.Dataframe(
                headers=[str(i) for i in range(10)],
                datatype="number",
                value=default_matrix,
                type="numpy",
                label="Edit Matrix Values"
            )
        ],
        outputs=[
            gr.Audio(type="filepath", label="Generated Sound"),
            gr.Image(type="filepath", label="Matrix Animation")
        ],
        title="Number Spread Simulator",
        description="Edit the matrix and see how numbers spread, generating a unique sound and animation!"
    )
    
    return iface

# Launch the interface
iface = create_gradio_interface()

if __name__ == "__main__":
    iface.launch()