File size: 5,802 Bytes
be87a2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import pandas as pd
import streamlit as st
from utils import df_to_html, render_svg, combine_json_files, render_metadata, color_mapping

data = combine_json_files('./languages')

## Filter data from religous texts and bad confidences
filtered_data = {}
for isocode, details in data.items():
    filtered_sites = [
        site for site in details.get("Sites", [])
        if site["Confidence"] != "πŸŸ₯" and "religious" not in site["Category"].lower()
    ]
    
    filtered_data[isocode] = details.copy()
    filtered_data[isocode]["Sites"] = filtered_sites
data = filtered_data


@st.cache_data
def render_home_table():
    """Renders home table."""
    # Compute number of unique domains/urls
    for key in data.keys():
        data[key]['Number of Sites'] = len(data[key].get('Sites', []))
        data[key]["Number of Links"] = sum(len(url_data["Links"]) for url_data in data[key].get('Sites', []))

    # Convert dict to df
    df_data = pd.DataFrame(data).transpose()
    df_data['ISO Code'] = df_data.index

    # Filter 0 sites
    df_data = df_data[df_data["Number of Sites"]!= 0]

    df_data['Number of Sites'] = df_data['Number of Sites'].astype(str)  # Convert to string
    df_data['ISO Code'] = df_data['ISO Code'].astype(str)  # Convert to string
    df_data['Number of Sites'] = df_data.apply(lambda row: '<a href="/?isocode={}&site=True" target="_self">{}</a>'.format(row['ISO Code'], row['Number of Sites']), axis=1)
    df_data['Number of Links'] = df_data.apply(lambda row: '<a href="/?isocode={}&links=True" target="_self">{}</a>'.format(row['ISO Code'], row['Number of Links']), axis=1)
    df_data["Support by MADLAD400, FLORES200, GLOT500"] = df_data.apply(lambda row: color_mapping([row["Supported by allenai/MADLAD-400"] + row["Supported by facebook/flores"] +  row["Supported by cis-lmu/Glot500"]]), axis =1)
    df_data['Color_Order'] = pd.Categorical(df_data['Support by MADLAD400, FLORES200, GLOT500'], categories=['πŸŸ₯', '🟧', '🟨', '🟩'], ordered=True)
    # Sort by Color_Order then ISO Code
    df_data = df_data.sort_values(by=['Color_Order', 'ISO Code'])

    # Filter 🟩
    df_data = df_data[df_data["Support by MADLAD400, FLORES200, GLOT500"]!= '🟩']

    # Display the table
    df_data = df_data[['ISO Code', 'Language Name', 'Family', 'Number of Sites', 'Number of Links', 'Number of Speakers', 'Support by MADLAD400, FLORES200, GLOT500']]
    st.write(df_to_html(df_data), unsafe_allow_html=True)

@st.cache_data
def render_site_table(isocode):

    # back 
    back_text = '<a href="/?home=True" target="_self">[Back]</a>'
    st.markdown(back_text, unsafe_allow_html=True)

    # site
    urls = data[isocode].get('Sites', [])
    df_urls = pd.DataFrame(urls)
    df_urls['Number of Links'] = df_urls['Links'].apply(len)
    df_urls = df_urls.sort_values(by='Number of Links', ascending=False)
    df_urls = df_urls.reset_index(drop=True)
    df_urls['Number of Links'] = df_urls.apply(lambda row: '<a href="/?isocode={}&siteurl={}" target="_self">{}</a>'.format(isocode, row['Site URL'], row['Number of Links']), axis=1)
    df_urls['Site URL'] = df_urls['Site URL'].apply(lambda url: f'<a href="{url}">{url}</a>' if url != 'misc' else url)
    df_urls['Language Name'] = data[isocode]['Language Name']
    df_urls['ISO Code'] = isocode

    # Display the table
    df_urls = df_urls[['ISO Code', 'Site URL', 'Category', 'Number of Links', 'Possible Parallel Languages', 'Confidence']]
    st.write(df_to_html(df_urls), unsafe_allow_html=True)


@st.cache_data
def render_siteurl_table(isocode, url):

    # back
    back_text = '<a href="/?isocode={}&site=True" target="_self">[Back]</a>'.format(isocode)
    st.markdown(back_text, unsafe_allow_html=True)

    # Find selected domain
    urls = data[isocode].get('Sites', [])
    selected_domain = next((d for d in urls if 'Site URL' in d and d['Site URL'] == url), None)
    
    if selected_domain:
        st.write({'Language Name': data[isocode]['Language Name'], 'ISO Code': isocode, 'Site URL': url, 'Links': selected_domain['Links']})



@st.cache_data
def render_links_table(isocode):

    # back 
    back_text = '<a href="/?home=True" target="_self">[Back]</a>'
    st.markdown(back_text, unsafe_allow_html=True)

    # output
    urls = data[isocode].get('Sites', [])
    lang_name = data[isocode]['Language Name']
    all_urls = [{'Site URL': du['Site URL'], 'Links': du['Links']} for du in urls] 
        
    st.write({'Language Name': lang_name, 'ISO Code': isocode, 'URLs': all_urls})



# show logo
render_svg(open("assets/glotweb_logo.svg").read())

def main():
    params = st.query_params

    if 'isocode' in params:
        if 'siteurl' in params:
            render_siteurl_table(params['isocode'], params['siteurl'])
        if 'site' in params:
            render_site_table(params['isocode'])
        if 'links' in params:
            render_links_table(params['isocode'])

    else:
        # show home
        render_metadata()
        st.markdown("**GlotWeb** is an indexing service for low-resource languages. It indexes (almost) **non-religous** sites and links written in each language. This list can be used to create raw text or mining parallel corpora and to study low-resource languages on the web.\n")
        render_home_table()
        st.markdown("\n\n<font color='gray'>We compare the level of support for these languages in the three big datasets ([MADLAD400](https://huggingface.co/datasets/allenai/MADLAD-400), [FLORES200](https://huggingface.co/datasets/facebook/flores), [GLOT500](https://huggingface.co/datasets/cis-lmu/Glot500)) of low-resource languages (πŸŸ₯ 0/3 < 🟧 1/3 < 🟨 2/3 < 🟩 3/3). Although the support in these datasets for some of these languages could be just the religious texts.</font>", unsafe_allow_html=True)

main()