kargaranamir commited on
Commit
3e026a0
1 Parent(s): 9a42e8c
Files changed (1) hide show
  1. app.py +4 -0
app.py CHANGED
@@ -129,6 +129,10 @@ INTRO_TEXT = f"""
129
 
130
  We introduce Mexa, a method for assessing the multilingual capabilities of English-centric large language models (LLMs). Mexa builds on the observation that English-centric LLMs semantically use English as a kind of pivot language in their intermediate layers. Mexa computes the alignment between non-English languages and English using parallel sentences, estimating the transfer of language understanding capabilities from English to other languages through this alignment. This metric can be useful in estimating task performance, provided we know the English performance in the task and the alignment score between languages derived from a parallel dataset.
131
 
 
 
 
 
132
  ## Details
133
  We use parallel datasets from FLORES and the Bible. In the ARC style, we use mean pooling over layers, and the English score achieved by each LLM in the ARC benchmark is used to adjust the multilingual scores. In the Belebele style, we use max pooling over layers, and the English score achieved by each LLM in Belebele is used to adjust the multilingual scores.
134
  """
 
129
 
130
  We introduce Mexa, a method for assessing the multilingual capabilities of English-centric large language models (LLMs). Mexa builds on the observation that English-centric LLMs semantically use English as a kind of pivot language in their intermediate layers. Mexa computes the alignment between non-English languages and English using parallel sentences, estimating the transfer of language understanding capabilities from English to other languages through this alignment. This metric can be useful in estimating task performance, provided we know the English performance in the task and the alignment score between languages derived from a parallel dataset.
131
 
132
+ ## Code
133
+
134
+ https://github.com/kargaranamir
135
+
136
  ## Details
137
  We use parallel datasets from FLORES and the Bible. In the ARC style, we use mean pooling over layers, and the English score achieved by each LLM in the ARC benchmark is used to adjust the multilingual scores. In the Belebele style, we use max pooling over layers, and the English score achieved by each LLM in Belebele is used to adjust the multilingual scores.
138
  """