File size: 7,816 Bytes
60a2f06
6b1f6b2
 
60a2f06
 
4dd76f1
60a2f06
6b1f6b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06243bf
 
 
 
 
 
6b1f6b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60a2f06
6b1f6b2
 
 
 
 
60a2f06
6b1f6b2
60a2f06
 
6b1f6b2
60a2f06
6b1f6b2
 
 
 
 
 
 
 
60a2f06
 
6b1f6b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60a2f06
6b1f6b2
60a2f06
 
6b1f6b2
 
4dd76f1
 
6b1f6b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06243bf
6b1f6b2
 
 
 
 
 
 
 
 
06243bf
 
60a2f06
6b1f6b2
 
 
60a2f06
6b1f6b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import subprocess
import requests
import string
import time
import re
import os

import openai
import gradio as gr

def get_content(filepath: str) -> str:
    url = string.Template(
        "https://raw.githubusercontent.com/huggingface/"
        "transformers/main/docs/source/en/$filepath"
    ).safe_substitute(filepath=filepath)
    response = requests.get(url)
    if response.status_code == 200:
        content = response.text
        return content
    else:
        raise ValueError("Failed to retrieve content from the URL.", url)

def preprocess_content(content: str) -> str:
    # Extract text to translate from document

    ## ignore top license comment
    to_translate = content[content.find('#'):]
    ## remove code blocks from text
    to_translate = re.sub(r'```.*?```', '', to_translate, flags=re.DOTALL)
    ## remove markdown tables from text
    to_translate = re.sub(r'^\|.*\|$\n?', '', to_translate, flags=re.MULTILINE)
    ## remove empty lines from text
    to_translate = re.sub(r'\n\n+', '\n\n', to_translate)

    return to_translate

def get_full_prompt(language: str, filepath: str) -> str:
    content = get_content(filepath)
    to_translate = preprocess_content(content)

    prompt = string.Template(
        "What do these sentences about Hugging Face Transformers "
        "(a machine learning library) mean in $language? "
        "Please do not translate the word after a 🤗 emoji "
        "as it is a product name.\n```md"
    ).safe_substitute(language=language)
    return '\n'.join([prompt, to_translate.strip(), "```"])

def split_markdown_sections(markdown: str) -> list:
    # Find all titles using regular expressions
    return re.split(r'^(#+\s+)(.*)$', markdown, flags=re.MULTILINE)[1:]
    # format is like [level, title, content, level, title, content, ...]

def get_anchors(divided: list) -> list:
    anchors = []
    # from https://github.com/huggingface/doc-builder/blob/01b262bae90d66e1150cdbf58c83c02733ed4366/src/doc_builder/build_doc.py#L300-L302
    for title in divided[1::3]:
        anchor = re.sub(r"[^a-z0-9\s]+", "", title.lower())
        anchor = re.sub(r"\s{2,}", " ", anchor.strip()).replace(" ", "-")
        anchors.append(f"[[{anchor}]]")
    return anchors

def make_scaffold(content: str, to_translate: str) -> string.Template:
    scaffold = content
    for i, text in enumerate(to_translate.split('\n\n')):
        scaffold = scaffold.replace(text, f'$hf_i18n_placeholder{i}', 1)
    return string.Template(scaffold)

def fill_scaffold(filepath: str, translated: str) -> list[str]:
    content = get_content(filepath)
    to_translate = preprocess_content(content)

    scaffold = make_scaffold(content, to_translate)
    divided = split_markdown_sections(to_translate)
    anchors = get_anchors(divided)

    translated = split_markdown_sections(translated)
    translated[1::3] = [
        f"{korean_title} {anchors[i]}"
        for i, korean_title in enumerate(translated[1::3])
    ]
    translated = ''.join([
        ''.join(translated[i*3:i*3+3])
        for i in range(len(translated) // 3)
    ]).split('\n\n')
    if (newlines := scaffold.template.count('$hf_i18n_placeholder') - len(translated)):
        return [
            content,
            f"Please {'recover' if newlines > 0 else 'remove'} "
            f"{abs(newlines)} incorrectly inserted double newlines."
        ]
    translated_doc = scaffold.safe_substitute({
        f"hf_i18n_placeholder{i}": text
        for i, text in enumerate(translated)
    })

    return [content, translated_doc]

def translate_openai(language: str, filepath: str, api_key: str) -> list[str]:
    content = get_content(filepath)
    return [content, "Please use the web UI for now."]
    raise NotImplementedError("Currently debugging output.")

    openai.api_key = api_key
    prompt = string.Template(
        "What do these sentences about Hugging Face Transformers "
        "(a machine learning library) mean in $language? "
        "Please do not translate the word after a 🤗 emoji "
        "as it is a product name.\n```md"
    ).safe_substitute(language=language)
    
    to_translate = preprocess_content(content)

    scaffold = make_scaffold(content, to_translate)
    divided = split_markdown_sections(to_translate)
    anchors = get_anchors(divided)

    sections = [''.join(divided[i*3:i*3+3]) for i in range(len(divided) // 3)]
    reply = []
    
    for i, section in enumerate(sections):
        chat = openai.ChatCompletion.create(
                model = "gpt-3.5-turbo",
                messages=[{
                    "role": "user",
                    "content": "\n".join([prompt, section, '```'])
                },]
            )
        print(f"{i} out of {len(sections)} complete. Estimated time remaining ~{len(sections) - i} mins")

        reply.append(chat.choices[0].message.content)

    translated = split_markdown_sections('\n\n'.join(reply))
    print(translated[1::3], anchors)
    translated[1::3] = [
        f"{korean_title} {anchors[i]}"
        for i, korean_title in enumerate(translated[1::3])
    ]
    translated = ''.join([
        ''.join(translated[i*3:i*3+3])
        for i in range(len(translated) // 3)
    ]).split('\n\n')
    translated_doc = scaffold.safe_substitute({
        f"hf_i18n_placeholder{i}": text
        for i, text in enumerate(translated)
    })
    return translated_doc

demo = gr.Blocks()

outputs = gr.outputs.Textbox(label="Translation")
with demo:
    gr.Markdown(
        "# HuggingFace i18n made easy\n"
        '<img style="float: right;" src="hfkr_logo.png" height="10em">'
    )
    with gr.Row():
        language_input = gr.inputs.Textbox(
            default="Korean",
            label=" / ".join([
                "Target language", "langue cible",
                "目标语", "Idioma Objetivo",
                "도착어", "língua alvo"
            ])
        )
        filepath_input = gr.inputs.Textbox(
            default="tasks/masked_language_modeling.md",
            label="File path of transformers document"
        )
    with gr.Tabs():
        with gr.TabItem("Web UI"):
            prompt_button = gr.Button("Show Full Prompt", variant="primary")
            # TODO: add with_prompt_checkbox so people can freely use other services such as DeepL or Papago.
            gr.Markdown("1. Copy with the button right-hand side and paste into [chat.openai.com](https://chat.openai.com).")
            prompt_output = gr.Textbox(label="Full Prompt", lines=3).style(show_copy_button=True)
            # TODO: add check for segments, indicating whether user should add or remove new lines from their input. (gr.Row)
            gr.Markdown("2. After getting the complete translation, remove randomly inserted newlines on your favorite text editor and paste the result below.")
            ui_translated_input = gr.inputs.Textbox(label="Cleaned ChatGPT initial translation")
            fill_button = gr.Button("Fill in scaffold", variant="primary")
        with gr.TabItem("API (Not Implemented)"):
            with gr.Row():
                api_key_input = gr.inputs.Textbox(label="Your OpenAI API Key")
                api_call_button = gr.Button("Translate (Call API)", variant="primary")
    with gr.Row():
        content_output = gr.Textbox(label="Original content").style(show_copy_button=True)
        final_output = gr.Textbox(label="Draft for review").style(show_copy_button=True)

    prompt_button.click(get_full_prompt, inputs=[language_input, filepath_input], outputs=prompt_output)
    fill_button.click(fill_scaffold, inputs=[filepath_input, ui_translated_input], outputs=[content_output, final_output])
    api_call_button.click(translate_openai, inputs=[language_input, filepath_input, api_key_input], outputs=[content_output, final_output])

demo.launch()