Spaces:
Sleeping
Sleeping
File size: 7,836 Bytes
60a2f06 6b1f6b2 60a2f06 4dd76f1 60a2f06 6b1f6b2 c349620 6b1f6b2 06243bf 6b1f6b2 60a2f06 6b1f6b2 60a2f06 6b1f6b2 60a2f06 6b1f6b2 60a2f06 6b1f6b2 60a2f06 6b1f6b2 60a2f06 6b1f6b2 60a2f06 6b1f6b2 04250ef 6b1f6b2 b5072a5 04250ef 6b1f6b2 b5072a5 04250ef 6b1f6b2 06243bf 6b1f6b2 b5072a5 6b1f6b2 b5072a5 6b1f6b2 06243bf 60a2f06 6b1f6b2 60a2f06 6b1f6b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import subprocess
import requests
import string
import time
import re
import os
import openai
import gradio as gr
def get_content(filepath: str) -> str:
url = string.Template(
"https://raw.githubusercontent.com/huggingface/"
"huggingface_hub/main/docs/source/en/$filepath"
).safe_substitute(filepath=filepath)
response = requests.get(url)
if response.status_code == 200:
content = response.text
return content
else:
raise ValueError("Failed to retrieve content from the URL.", url)
def preprocess_content(content: str) -> str:
# Extract text to translate from document
## ignore top license comment
to_translate = content[content.find('#'):]
## remove code blocks from text
to_translate = re.sub(r'```.*?```', '', to_translate, flags=re.DOTALL)
## remove markdown tables from text
to_translate = re.sub(r'^\|.*\|$\n?', '', to_translate, flags=re.MULTILINE)
## remove empty lines from text
to_translate = re.sub(r'\n\n+', '\n\n', to_translate)
return to_translate
def get_full_prompt(language: str, filepath: str) -> str:
content = get_content(filepath)
to_translate = preprocess_content(content)
prompt = string.Template(
"What do these sentences about Hugging Face Transformers "
"(a machine learning library) mean in $language? "
"Please do not translate the word after a 🤗 emoji "
"as it is a product name.\n```md"
).safe_substitute(language=language)
return '\n'.join([prompt, to_translate.strip(), "```"])
def split_markdown_sections(markdown: str) -> list:
# Find all titles using regular expressions
return re.split(r'^(#+\s+)(.*)$', markdown, flags=re.MULTILINE)[1:]
# format is like [level, title, content, level, title, content, ...]
def get_anchors(divided: list) -> list:
anchors = []
# from https://github.com/huggingface/doc-builder/blob/01b262bae90d66e1150cdbf58c83c02733ed4366/src/doc_builder/build_doc.py#L300-L302
for title in divided[1::3]:
anchor = re.sub(r"[^a-z0-9\s]+", "", title.lower())
anchor = re.sub(r"\s{2,}", " ", anchor.strip()).replace(" ", "-")
anchors.append(f"[[{anchor}]]")
return anchors
def make_scaffold(content: str, to_translate: str) -> string.Template:
scaffold = content
for i, text in enumerate(to_translate.split('\n\n')):
scaffold = scaffold.replace(text, f'$hf_i18n_placeholder{i}', 1)
return string.Template(scaffold)
def fill_scaffold(filepath: str, translated: str) -> list[str]:
content = get_content(filepath)
to_translate = preprocess_content(content)
scaffold = make_scaffold(content, to_translate)
divided = split_markdown_sections(to_translate)
anchors = get_anchors(divided)
translated = split_markdown_sections(translated)
translated[1::3] = [
f"{korean_title} {anchors[i]}"
for i, korean_title in enumerate(translated[1::3])
]
translated = ''.join([
''.join(translated[i*3:i*3+3])
for i in range(len(translated) // 3)
]).split('\n\n')
if (newlines := scaffold.template.count('$hf_i18n_placeholder') - len(translated)):
return [
content,
f"Please {'recover' if newlines > 0 else 'remove'} "
f"{abs(newlines)} incorrectly inserted double newlines."
]
translated_doc = scaffold.safe_substitute({
f"hf_i18n_placeholder{i}": text
for i, text in enumerate(translated)
})
return [content, translated_doc]
def translate_openai(language: str, filepath: str, api_key: str) -> list[str]:
content = get_content(filepath)
return [content, "Please use the web UI for now."]
raise NotImplementedError("Currently debugging output.")
openai.api_key = api_key
prompt = string.Template(
"What do these sentences about Hugging Face Transformers "
"(a machine learning library) mean in $language? "
"Please do not translate the word after a 🤗 emoji "
"as it is a product name.\n```md"
).safe_substitute(language=language)
to_translate = preprocess_content(content)
scaffold = make_scaffold(content, to_translate)
divided = split_markdown_sections(to_translate)
anchors = get_anchors(divided)
sections = [''.join(divided[i*3:i*3+3]) for i in range(len(divided) // 3)]
reply = []
for i, section in enumerate(sections):
chat = openai.ChatCompletion.create(
model = "gpt-3.5-turbo",
messages=[{
"role": "user",
"content": "\n".join([prompt, section, '```'])
},]
)
print(f"{i} out of {len(sections)} complete. Estimated time remaining ~{len(sections) - i} mins")
reply.append(chat.choices[0].message.content)
translated = split_markdown_sections('\n\n'.join(reply))
print(translated[1::3], anchors)
translated[1::3] = [
f"{korean_title} {anchors[i]}"
for i, korean_title in enumerate(translated[1::3])
]
translated = ''.join([
''.join(translated[i*3:i*3+3])
for i in range(len(translated) // 3)
]).split('\n\n')
translated_doc = scaffold.safe_substitute({
f"hf_i18n_placeholder{i}": text
for i, text in enumerate(translated)
})
return translated_doc
demo = gr.Blocks()
with demo:
gr.Markdown(
'<img style="display: block; margin-left: auto; margin-right: auto; height: 10em;"'
' src="file/hfkr_logo.png"/>\n\n'
'<h1 style="text-align: center;">HuggingFace i18n made easy</h1>'
)
with gr.Row():
language_input = gr.Textbox(
value="Korean",
label=" / ".join([
"Target language", "langue cible",
"目标语", "Idioma Objetivo",
"도착어", "língua alvo"
])
)
filepath_input = gr.Textbox(
value="tasks/masked_language_modeling.md",
label="File path of transformers document"
)
with gr.Tabs():
with gr.TabItem("Web UI"):
prompt_button = gr.Button("Show Full Prompt", variant="primary")
# TODO: add with_prompt_checkbox so people can freely use other services such as DeepL or Papago.
gr.Markdown("1. Copy with the button right-hand side and paste into [chat.openai.com](https://chat.openai.com).")
prompt_output = gr.Textbox(label="Full Prompt", lines=3).style(show_copy_button=True)
# TODO: add check for segments, indicating whether user should add or remove new lines from their input. (gr.Row)
gr.Markdown("2. After getting the complete translation, remove randomly inserted newlines on your favorite text editor and paste the result below.")
ui_translated_input = gr.Textbox(label="Cleaned ChatGPT initial translation")
fill_button = gr.Button("Fill in scaffold", variant="primary")
with gr.TabItem("API (Not Implemented)"):
with gr.Row():
api_key_input = gr.Textbox(label="Your OpenAI API Key")
api_call_button = gr.Button("Translate (Call API)", variant="primary")
with gr.Row():
content_output = gr.Textbox(label="Original content").style(show_copy_button=True)
final_output = gr.Textbox(label="Draft for review").style(show_copy_button=True)
prompt_button.click(get_full_prompt, inputs=[language_input, filepath_input], outputs=prompt_output)
fill_button.click(fill_scaffold, inputs=[filepath_input, ui_translated_input], outputs=[content_output, final_output])
api_call_button.click(translate_openai, inputs=[language_input, filepath_input, api_key_input], outputs=[content_output, final_output])
demo.launch()
|