import subprocess import requests import string import time import re import os import openai import gradio as gr def get_content(filepath: str) -> str: url = string.Template( "https://raw.githubusercontent.com/huggingface/" "huggingface_hub/main/docs/source/en/$filepath" ).safe_substitute(filepath=filepath) response = requests.get(url) if response.status_code == 200: content = response.text return content else: raise ValueError("Failed to retrieve content from the URL.", url) def preprocess_content(content: str) -> str: # Extract text to translate from document ## ignore top license comment to_translate = content[content.find('#'):] ## remove code blocks from text to_translate = re.sub(r'```.*?```', '', to_translate, flags=re.DOTALL) ## remove markdown tables from text to_translate = re.sub(r'^\|.*\|$\n?', '', to_translate, flags=re.MULTILINE) ## remove empty lines from text to_translate = re.sub(r'\n\n+', '\n\n', to_translate) return to_translate def get_full_prompt(language: str, filepath: str) -> str: content = get_content(filepath) to_translate = preprocess_content(content) prompt = string.Template( "What do these sentences about Hugging Face Transformers " "(a machine learning library) mean in $language? " "Please do not translate the word after a 🤗 emoji " "as it is a product name.\n```md" ).safe_substitute(language=language) return '\n'.join([prompt, to_translate.strip(), "```"]) def split_markdown_sections(markdown: str) -> list: # Find all titles using regular expressions return re.split(r'^(#+\s+)(.*)$', markdown, flags=re.MULTILINE)[1:] # format is like [level, title, content, level, title, content, ...] def get_anchors(divided: list) -> list: anchors = [] # from https://github.com/huggingface/doc-builder/blob/01b262bae90d66e1150cdbf58c83c02733ed4366/src/doc_builder/build_doc.py#L300-L302 for title in divided[1::3]: anchor = re.sub(r"[^a-z0-9\s]+", "", title.lower()) anchor = re.sub(r"\s{2,}", " ", anchor.strip()).replace(" ", "-") anchors.append(f"[[{anchor}]]") return anchors def make_scaffold(content: str, to_translate: str) -> string.Template: scaffold = content for i, text in enumerate(to_translate.split('\n\n')): scaffold = scaffold.replace(text, f'$hf_i18n_placeholder{i}', 1) return string.Template(scaffold) def fill_scaffold(filepath: str, translated: str) -> list[str]: content = get_content(filepath) to_translate = preprocess_content(content) scaffold = make_scaffold(content, to_translate) divided = split_markdown_sections(to_translate) anchors = get_anchors(divided) translated = split_markdown_sections(translated) translated[1::3] = [ f"{korean_title} {anchors[i]}" for i, korean_title in enumerate(translated[1::3]) ] translated = ''.join([ ''.join(translated[i*3:i*3+3]) for i in range(len(translated) // 3) ]).split('\n\n') if (newlines := scaffold.template.count('$hf_i18n_placeholder') - len(translated)): return [ content, f"Please {'recover' if newlines > 0 else 'remove'} " f"{abs(newlines)} incorrectly inserted double newlines." ] translated_doc = scaffold.safe_substitute({ f"hf_i18n_placeholder{i}": text for i, text in enumerate(translated) }) return [content, translated_doc] def translate_openai(language: str, filepath: str, api_key: str) -> list[str]: content = get_content(filepath) return [content, "Please use the web UI for now."] raise NotImplementedError("Currently debugging output.") openai.api_key = api_key prompt = string.Template( "What do these sentences about Hugging Face Transformers " "(a machine learning library) mean in $language? " "Please do not translate the word after a 🤗 emoji " "as it is a product name.\n```md" ).safe_substitute(language=language) to_translate = preprocess_content(content) scaffold = make_scaffold(content, to_translate) divided = split_markdown_sections(to_translate) anchors = get_anchors(divided) sections = [''.join(divided[i*3:i*3+3]) for i in range(len(divided) // 3)] reply = [] for i, section in enumerate(sections): chat = openai.ChatCompletion.create( model = "gpt-3.5-turbo", messages=[{ "role": "user", "content": "\n".join([prompt, section, '```']) },] ) print(f"{i} out of {len(sections)} complete. Estimated time remaining ~{len(sections) - i} mins") reply.append(chat.choices[0].message.content) translated = split_markdown_sections('\n\n'.join(reply)) print(translated[1::3], anchors) translated[1::3] = [ f"{korean_title} {anchors[i]}" for i, korean_title in enumerate(translated[1::3]) ] translated = ''.join([ ''.join(translated[i*3:i*3+3]) for i in range(len(translated) // 3) ]).split('\n\n') translated_doc = scaffold.safe_substitute({ f"hf_i18n_placeholder{i}": text for i, text in enumerate(translated) }) return translated_doc demo = gr.Blocks() with demo: gr.Markdown( '\n\n' '