monicet / app.py
Christian Kauth
Monicet animals model
b8fa518
raw
history blame
940 Bytes
import gradio as gr
import numpy as np
import os
import PIL
import tensorflow as tf
from tensorflow import keras
def predict(img):
img_cropped = np.array(img, dtype='float32')[:100, 15:-15, :] / 255
img_bw = np.mean(img_cropped, axis=-1)
# predict
img_input = np.expand_dims(img_bw, axis=0)
prediction = model.predict(img_input)[0]
animals = ['common bottlenose dolphin', 'fin whale', 'risso dolphin', 'short finned pilot whale', 'sperm whale']
#bw image for display
im = PIL.Image.fromarray(np.uint8(img_bw*255))
return [{animals[i]: float(prediction[i]) for i in range(len(animals))}, im]
model = keras.models.load_model('model')
iface = gr.Interface(predict,\
inputs = gr.Image(shape=(130, 120)),\
outputs = [gr.outputs.Label(num_top_classes=5),\
gr.Image(shape=(100, 100), image_mode='L')])
iface.launch()