Spaces:
Sleeping
Sleeping
File size: 21,080 Bytes
a19c1c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 |
import json
import string
from time import time
import en_core_web_lg
import inflect
import nltk
import numpy as np
import pandas as pd
import streamlit as st
from nltk.tokenize import sent_tokenize
from transformers import pipeline
# Set constant values
INFLECT_ENGINE = inflect.engine()
TOP_K = 30
NLI_LIMIT = 0.9
st.set_page_config(layout="wide")
def get_top_k():
return TOP_K
def get_nli_limit():
return NLI_LIMIT
### Streamlit specific
@st.cache(allow_output_mutation=True)
def load_model_prompting():
return pipeline("fill-mask", model="distilbert-base-uncased")
@st.cache(allow_output_mutation=True)
def load_model_nli():
try:
return pipeline(
task="sentiment-analysis", model="roberta-large-mnli", device="mps"
)
except:
return pipeline(task="sentiment-analysis", model="roberta-large-mnli")
@st.cache(allow_output_mutation=True)
def load_spacy_pipeline():
return en_core_web_lg.load()
@st.cache()
def download_punkt():
nltk.download("punkt")
download_punkt()
@st.experimental_memo(max_entries=1)
def read_json_from_web(uploaded_json):
return json.load(uploaded_json)
@st.experimental_memo(max_entries=1)
def read_csv_from_web(uploaded_file):
"""Read CSV from the streamlit interface
:param uploaded_file: File to read
:type uploaded_file: UploadedFile (BytesIO)
:return: Dataframe
:rtype: pandas DataFrame
"""
try:
# Try first to read comma separated and semicolon separated files
data = pd.read_csv(uploaded_file, sep=None, engine="python")
# If both are not correct, then it will error and go to the except
except pd.errors.ParserError:
# This should be the case when there is no separator (1 column csv)
# Reset the IO object due to the previous crash
uploaded_file.seek(0)
# Use standard reading of CSV (no separator)
data = pd.read_csv(uploaded_file)
return data
def apply_style():
# Avoid having ellipsis in the multi select options
styl = """
<style>
.stMultiSelect span{
max-width: none;
}
</style>
"""
st.markdown(styl, unsafe_allow_html=True)
# Set color of multiselect to red
st.markdown(
"""
<style>
span[data-baseweb="tag"] {
background-color: red !important;
}
</style>
""",
unsafe_allow_html=True,
)
hide_st_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
header {visibility: hidden;}
</style>
"""
st.markdown(hide_st_style, unsafe_allow_html=True)
def choose_text_menu(text):
if "text" not in st.session_state:
st.session_state.text = "Several demonstrators were injured."
text = st.text_area("Event description", st.session_state.text)
return text
def initiate_widget_st_state(widget_key, perm_key, default_value):
if perm_key not in st.session_state:
st.session_state[perm_key] = default_value
if widget_key not in st.session_state:
st.session_state[widget_key] = st.session_state[perm_key]
def get_idx_column(col_name, col_list):
if col_name in col_list:
return col_list.index(col_name)
else:
return 0
def callback_add_to_multiselect(str_to_add, multiselect_key, text_input_key, *keys):
if len(str_to_add) == 0:
st.warning("Word is empty, did you press Enter on the field text?")
return
current_dict = st.session_state
*dict_keys, item_keys = keys
try:
for key in dict_keys:
current_dict = current_dict[key]
current_dict[item_keys].append(str_to_add)
except KeyError as e:
raise KeyError(keys) from e
if multiselect_key in st.session_state:
st.session_state[multiselect_key].append(str_to_add)
else:
st.session_state[multiselect_key] = [str_to_add]
st.session_state[text_input_key] = ""
# Split the text into sentences. Necessary for NLI models
def split_sentences(text):
return sent_tokenize(text)
def get_num_sentences_in_list_text(list_texts):
num_sentences = 0
for text in list_texts:
num_sentences += len(split_sentences(text))
return num_sentences
###### Prompting
def query_model_prompting(model, text, prompt_with_mask, top_k, targets):
"""Query the prompting model
:param model: Prompting model object
:type model: Huggingface pipeline object
:param text: Event description (context)
:type text: str
:param prompt_with_mask: Prompt with a mask
:type prompt_with_mask: str
:param top_k: Number of tokens to output
:type top_k: integer
:param targets: Restrict the answer to these possible tokens
:type targets: list
:return: Results of the prompting model
:rtype: list of dict
"""
sequence = text + prompt_with_mask
output_tokens = model(sequence, top_k=top_k, targets=targets)
return output_tokens
def do_sentence_entailment(sentence, hypothesis, model):
"""Concatenate context and hypothesis then perform entailment
:param sentence: Event description (context), 1 sentence
:type sentence: str
:param hypothesis: Mask filled with a token
:type hypothesis: str
:param model: NLI Model
:type model: Huggingface pipeline
:return: DataFrame containing the result of the entailment
:rtype: pandas DataFrame
"""
text = sentence + "</s></s>" + hypothesis
res = model(text, return_all_scores=True)
df_res = pd.DataFrame(res[0])
df_res["label"] = df_res["label"].apply(lambda x: x.lower())
df_res.columns = ["Label", "Score"]
return df_res
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
return np.exp(x) / np.sum(np.exp(x), axis=0)
def get_singular_form(word):
"""Get the singular form of a word
:param word: word
:type word: string
:return: singular form of the word
:rtype: string
"""
if INFLECT_ENGINE.singular_noun(word):
return INFLECT_ENGINE.singular_noun(word)
else:
return word
######### NLI + PROMPTING
def do_text_entailment(text, hypothesis, model):
"""
Do entailment for each sentence of the event description as
model was trained on sentence pair
:param text: Event Description (context)
:type text: str
:param hypothesis: Mask filled with a token
:type hypothesis: str
:param model: Model NLI
:type model: Huggingface pipeline
:return: List of entailment results for each sentence of the text
:rtype: list
"""
text_entailment_results = []
for i, sentence in enumerate(split_sentences(text)):
df_score = do_sentence_entailment(sentence, hypothesis, model)
text_entailment_results.append((sentence, hypothesis, df_score))
return text_entailment_results
def get_true_entailment(text_entailment_results, nli_limit):
"""
From the result of each sentence entailment, extract the maximum entailment score and
check if it's higher than the entailment threshold.
"""
true_hypothesis_list = []
max_score = 0
for sentence_entailment in text_entailment_results:
df_score = sentence_entailment[2]
score = df_score[df_score["Label"] == "entailment"]["Score"].values.max()
if score > max_score:
max_score = score
if max_score > nli_limit:
true_hypothesis_list.append((sentence_entailment[1], np.round(max_score, 2)))
return list(set(true_hypothesis_list))
def run_model_nli(data, batch_size, model_nli, use_tf=False):
if not use_tf:
return model_nli(data, top_k=3, batch_size=batch_size)
else:
raise NotImplementedError
# return run_pipeline_on_gpu(data, batch_size, model_nli["tokenizer"], model_nli["model"])
def prompt_to_nli_batching(
text,
prompt,
model_prompting,
nli_model,
nlp,
top_k=10,
nli_limit=0.5,
targets=None,
additional_words=None,
remove_lemma=False,
use_tf=False,
):
# Check if text has end ponctuation
if text[-1] not in string.punctuation:
text += "."
prompt_masked = prompt.format(model_prompting.tokenizer.mask_token)
output_prompting = query_model_prompting(
model_prompting, text, prompt_masked, top_k, targets=targets
)
if remove_lemma:
output_prompting = filter_prompt_output_by_lemma(prompt, output_prompting, nlp)
full_batch_concat = []
prompt_tokens = []
for token in output_prompting:
hypothesis = prompt.format(token["token_str"])
for i, sentence in enumerate(split_sentences(text)):
full_batch_concat.append(sentence + "</s></s>" + hypothesis)
prompt_tokens.append((token["token_str"], token["score"]))
# Add words that must be tried for entailment
# Also increase batch_size
if additional_words:
for i, sentence in enumerate(split_sentences(text)):
for token in additional_words:
hypothesis = prompt.format(token)
full_batch_concat.append(sentence + "</s></s>" + hypothesis)
prompt_tokens.append((token, 1))
top_k = top_k + 1
results_nli = run_model_nli(full_batch_concat, top_k, nli_model, use_tf)
# Get entailed tokens
entailed_tokens = []
for i, res in enumerate(results_nli):
entailed_tokens.extend(
[
(get_singular_form(prompt_tokens[i][0]), x["score"])
for x in res
if ((x["label"] == "ENTAILMENT") & (x["score"] > nli_limit))
]
)
if entailed_tokens:
entailed_tokens = list(
pd.DataFrame(entailed_tokens).groupby(0).max()[1].items()
)
return entailed_tokens, list(set(prompt_tokens))
def remove_similar_lemma_from_list(prompt, list_words, nlp):
## Compute a dictionnary with the lemma for all tokens
## If there is a duplicate lemma then the dictionnary value will be a list of the corresponding tokens
lemma_dict = {}
for each in list_words:
mask_filled = nlp(prompt.strip(".").format(each))
lemma_dict.setdefault([x.lemma_ for x in mask_filled][-1], []).append(each)
## Get back the list of tokens
## If multiple tokens available then take the shortest one
new_token_list = []
for key in lemma_dict.keys():
if len(lemma_dict[key]) >= 1:
new_token_list.append(min(lemma_dict[key], key=len))
else:
raise ValueError("Lemma dict has 0 corresponding words")
return new_token_list
def filter_prompt_output_by_lemma(prompt, output_prompting, nlp):
"""
Remove all similar lemmas from the prompt output (e.g. "protest", "protests")
"""
list_words = [x["token_str"] for x in output_prompting]
new_token_list = remove_similar_lemma_from_list(prompt, list_words, nlp)
return [x for x in output_prompting if x["token_str"] in new_token_list]
# Streamlit specific run functions
@st.experimental_memo(max_entries=1024)
def do_prent(text, template, top_k, nli_limit, additional_words=None):
"""Function used to execute PRENT model
:param text: Event text
:type text: string
:param template: Template with mask
:type template: string
:param top_k: Maximum tokens to output from prompting model
:type top_k: int
:param nli_limit: Threshold of entailment for NLI [0,1]
:type nli_limit: float
:param additional_words: List of words that bypass prompting and goes directly to NLI, defaults to None
:type additional_words: list, optional
:return: (Results Entailment, Results Prompting)
:rtype: tuple
"""
results_nli, results_pr = prompt_to_nli_batching(
text,
template,
load_model_prompting(),
load_model_nli(),
load_spacy_pipeline(),
top_k=top_k,
nli_limit=nli_limit,
targets=None,
additional_words=additional_words,
remove_lemma=True,
)
return results_nli, results_pr
def get_additional_words():
"""Extract the additional words from the codebook
:return: list of additional words
:rtype: list
"""
if "add_words" in st.session_state.codebook:
additional_words = st.session_state.codebook["add_words"]
else:
additional_words = None
return additional_words
def run_prent(
text="", templates=[], additional_words=None, progress=True, display_text=True
):
"""Execute PRENT over a list of templates and display streamlit widgets
:param text: Event description, defaults to ""
:type text: str, optional
:param templates: Templates with a mask, defaults to []
:type templates: list, optional
:param additional_words: List of words to bypass prompting, defaults to None
:type additional_words: list, optional
:param progress: Display or not the progress bar, defaults to True
:type progress: bool, optional
:return: (results of prent, computation time)
:rtype: tuple
"""
# Check if there is any template and event description available
if not templates:
st.warning("Template list is empty. Please add one.")
return None, None
if not text:
st.warning("Event description is empty.")
return None, None
# Display text only when computing
if display_text:
temp_text = st.empty()
temp_text.markdown("**Event Descriptions:** {}".format(text))
# Start progress bar
if progress:
progress_bar = st.progress(0)
num_prent_call = len(templates)
num_sentences = get_num_sentences_in_list_text([text])
iter = 0
t0 = time()
# We set the radio choice of streamlit to Ignore at first
if "accept_reject_text_perm" in st.session_state:
st.session_state["accept_reject_text_perm"] = "Ignore"
res = {}
for template in templates:
template = template.replace("[Z]", "{}")
results_nli, results_pr = do_prent(
text,
template,
top_k=TOP_K,
nli_limit=NLI_LIMIT,
additional_words=additional_words,
)
# Results_nli contains % of entailment, we only care about the tokens string
res[template] = [x[0] for x in results_nli]
# Update progress bar
iter += 1
if progress:
progress_bar.progress((1 / num_prent_call) * (iter))
if display_text:
temp_text.markdown("")
time_comput = (time() - t0) / num_sentences
# This check is done otherwise the time of computation is replaced by the
# time of computation when using cached value
if not time_comput < st.session_state.time_comput / 5:
st.session_state.time_comput = int(time_comput)
# Store some results
res["templates_used"] = templates
res["additional_words_used"] = additional_words
return res, time_comput
####### Find event types based on codebook and PRENT results
def check_any_conds(cond_any, list_res):
"""Function that evaluates the "OR" conditions of the codebook versus the list of filled templates
:param cond_any: List of groundtruth filled templates
:type cond_any: list
:param list_res: A list of the filled templates given by PRENT
:type list_res: list
:return: True if any groundtruth template is inside the list given by PRENT
:rtype: bool
"""
cond_any = list(cond_any)
condition = False
# Return False if there is no any condition
if not cond_any:
return False
for cond in cond_any:
# With the current codebook design, this should never be true.
# Before it was possible to have recursion to check AND conditions inside an OR condition
if isinstance(cond, dict):
condition = check_all_conds(cond["all"], list_res)
else:
# Check lowercase version of templates
if cond.lower() in [x.lower() for x in list_res]:
condition = True
# Exit function as the other templates won't change the outcome
return condition
return condition
def check_all_conds(cond_all, list_res):
"""Function that evaluates the "AND" conditions of the codebook versus the list of filled templates
:param cond_all: List of groundtruth filled templates
:type cond_all: list
:param list_res: A list of the filled templates given by PRENT
:type list_res: list
:return: True if all groundtruth template are inside the list given by PRENT
:rtype: bool
"""
cond_all = list(cond_all)
# Return False if there is no all condition
if not cond_all:
return False
# Start bool on True, and put it to false if any template is missing
condition = True
for cond in cond_all:
# With the current codebook design, this should never be true.
# Before it was possible to have recursion to check OR conditions inside an AND condition
if isinstance(cond, dict):
condition = check_any_conds(cond["any"])
else:
# Check lowercase version of templates
if not (cond.lower() in [x.lower() for x in list_res]):
condition = False
# Exit function as the other templates won't change the outcome
return condition
return condition
def find_event_types(codebook, list_res):
"""This function evaluates the codebook and then outputs a list of events types corresponding to the given results of PRENT (list of filled templates).
:param codebook: A codebook in the format given by the dashboard
:type codebook: dict
:param list_res: A list of the filled templates given by PRENT
:type list_res: list
:return: List of event type
:rtype: list
"""
list_event_type = []
# Iterate over all defined event types
for event_type in codebook["events"]:
code_event = codebook["events"][event_type]
is_not_all_event, is_not_any_event, is_not_event = False, False, False
is_all_event, is_any_event, is_event = False, False, False
# First check if NOT conditions are met
# e.g. a filled template that is contrary to the event is present
if "not_all" in code_event:
cond_all = code_event["not_all"]
if check_all_conds(cond_all, list_res):
is_not_all_event = True
if "not_any" in code_event:
cond_any = code_event["not_any"]
if check_any_conds(cond_any, list_res):
is_not_any_event = True
# Next we need to check if the "not_all" and "not_any" are related
# by an "OR" or "AND".
# This latest case needs special care because one of two list can
# be empty so False
if code_event["not_all_any_rel"] == "AND":
if is_not_all_event and (not code_event["not_any"]):
# If all TRUE and ANY is empty (so false)
is_not_event = True
elif is_not_any_event and (not code_event["not_all"]):
# If any TRUE and ALL is empty (so false)
is_not_event = True
if is_not_all_event and is_not_any_event:
is_not_event = True
elif code_event["not_all_any_rel"] == "OR":
if is_not_all_event or is_not_any_event:
is_not_event = True
# The other checks are not necessary if this is true, so we go
# to the next iteration
if is_not_event:
continue
# Similar to the previous checks but this time we look for templates that should be present
if "all" in code_event:
cond_all = code_event["all"]
## Then check if All conditions are met, if not exit
if check_all_conds(cond_all, list_res):
is_all_event = True
if "any" in code_event:
## Finally check if Any conditions is met, if not exit
cond_any = code_event["any"]
if check_any_conds(cond_any, list_res):
is_any_event = True
# This case needs special care because one of two list can
# be empty so False
if code_event["all_any_rel"] == "AND":
if is_all_event and (not code_event["any"]):
# If all TRUE and ANY is empty (so false)
is_event = True
elif is_any_event and (not code_event["all"]):
# If any TRUE and ALL is empty (so false)
is_event = True
elif is_all_event and is_any_event:
is_event = True
elif code_event["all_any_rel"] == "OR":
if is_all_event or is_any_event:
is_event = True
# If all checks are correct, then we can add the event type to the output list
if is_event:
list_event_type.append(event_type)
return list_event_type
|