clemdesr
commited on
Commit
·
b299c15
1
Parent(s):
1279080
feat random pred
Browse files- tasks/text.py +45 -44
tasks/text.py
CHANGED
@@ -60,50 +60,51 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
60 |
# Make random predictions (placeholder for actual model inference)
|
61 |
true_labels = test_dataset["label"]
|
62 |
|
63 |
-
import torch
|
64 |
-
from transformers import (
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
)
|
70 |
-
|
71 |
-
model_name = "clementdesroches/distilbert_climate_ai"
|
72 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
73 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(LABEL_MAPPING))
|
74 |
-
|
75 |
-
# Tokenize the datasets
|
76 |
-
def tokenize_function(examples):
|
77 |
-
|
78 |
-
|
79 |
-
tokenized_test_dataset = test_dataset.map(tokenize_function, batched=True)
|
80 |
-
|
81 |
-
# Set training arguments
|
82 |
-
training_args = TrainingArguments(
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
)
|
93 |
-
|
94 |
-
# Initialize the Trainer
|
95 |
-
trainer = Trainer(
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
)
|
101 |
-
|
102 |
-
import numpy as np
|
103 |
-
|
104 |
-
preds = trainer.predict(tokenized_test_dataset)
|
105 |
-
|
106 |
-
predictions = np.array([np.argmax(x) for x in preds[0]])
|
|
|
107 |
|
108 |
# --------------------------------------------------------------------------------------------
|
109 |
# YOUR MODEL INFERENCE STOPS HERE
|
|
|
60 |
# Make random predictions (placeholder for actual model inference)
|
61 |
true_labels = test_dataset["label"]
|
62 |
|
63 |
+
# import torch
|
64 |
+
# from transformers import (
|
65 |
+
# AutoModelForSequenceClassification,
|
66 |
+
# AutoTokenizer,
|
67 |
+
# Trainer,
|
68 |
+
# TrainingArguments,
|
69 |
+
# )
|
70 |
+
|
71 |
+
# model_name = "clementdesroches/distilbert_climate_ai"
|
72 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
73 |
+
# model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(LABEL_MAPPING))
|
74 |
+
|
75 |
+
# # Tokenize the datasets
|
76 |
+
# def tokenize_function(examples):
|
77 |
+
# return tokenizer(examples["quote"], padding="max_length", truncation=True)
|
78 |
+
|
79 |
+
# tokenized_test_dataset = test_dataset.map(tokenize_function, batched=True)
|
80 |
+
|
81 |
+
# # Set training arguments
|
82 |
+
# training_args = TrainingArguments(
|
83 |
+
# output_dir="./bert_classification_results",
|
84 |
+
# evaluation_strategy="epoch",
|
85 |
+
# save_strategy="epoch",
|
86 |
+
# learning_rate=2e-5,
|
87 |
+
# per_device_train_batch_size=8,
|
88 |
+
# per_device_eval_batch_size=8,
|
89 |
+
# num_train_epochs=30,
|
90 |
+
# weight_decay=0.01,
|
91 |
+
# load_best_model_at_end=True,
|
92 |
+
# )
|
93 |
+
|
94 |
+
# # Initialize the Trainer
|
95 |
+
# trainer = Trainer(
|
96 |
+
# model=model,
|
97 |
+
# args=training_args,
|
98 |
+
# eval_dataset=tokenized_test_dataset,
|
99 |
+
# tokenizer=tokenizer,
|
100 |
+
# )
|
101 |
+
|
102 |
+
# import numpy as np
|
103 |
+
|
104 |
+
# preds = trainer.predict(tokenized_test_dataset)
|
105 |
+
|
106 |
+
# predictions = np.array([np.argmax(x) for x in preds[0]])
|
107 |
+
predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
108 |
|
109 |
# --------------------------------------------------------------------------------------------
|
110 |
# YOUR MODEL INFERENCE STOPS HERE
|