clemdesr commited on
Commit
b299c15
·
1 Parent(s): 1279080

feat random pred

Browse files
Files changed (1) hide show
  1. tasks/text.py +45 -44
tasks/text.py CHANGED
@@ -60,50 +60,51 @@ async def evaluate_text(request: TextEvaluationRequest):
60
  # Make random predictions (placeholder for actual model inference)
61
  true_labels = test_dataset["label"]
62
 
63
- import torch
64
- from transformers import (
65
- AutoModelForSequenceClassification,
66
- AutoTokenizer,
67
- Trainer,
68
- TrainingArguments,
69
- )
70
-
71
- model_name = "clementdesroches/distilbert_climate_ai"
72
- tokenizer = AutoTokenizer.from_pretrained(model_name)
73
- model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(LABEL_MAPPING))
74
-
75
- # Tokenize the datasets
76
- def tokenize_function(examples):
77
- return tokenizer(examples["quote"], padding="max_length", truncation=True)
78
-
79
- tokenized_test_dataset = test_dataset.map(tokenize_function, batched=True)
80
-
81
- # Set training arguments
82
- training_args = TrainingArguments(
83
- output_dir="./bert_classification_results",
84
- evaluation_strategy="epoch",
85
- save_strategy="epoch",
86
- learning_rate=2e-5,
87
- per_device_train_batch_size=8,
88
- per_device_eval_batch_size=8,
89
- num_train_epochs=30,
90
- weight_decay=0.01,
91
- load_best_model_at_end=True,
92
- )
93
-
94
- # Initialize the Trainer
95
- trainer = Trainer(
96
- model=model,
97
- args=training_args,
98
- eval_dataset=tokenized_test_dataset,
99
- tokenizer=tokenizer,
100
- )
101
-
102
- import numpy as np
103
-
104
- preds = trainer.predict(tokenized_test_dataset)
105
-
106
- predictions = np.array([np.argmax(x) for x in preds[0]])
 
107
 
108
  # --------------------------------------------------------------------------------------------
109
  # YOUR MODEL INFERENCE STOPS HERE
 
60
  # Make random predictions (placeholder for actual model inference)
61
  true_labels = test_dataset["label"]
62
 
63
+ # import torch
64
+ # from transformers import (
65
+ # AutoModelForSequenceClassification,
66
+ # AutoTokenizer,
67
+ # Trainer,
68
+ # TrainingArguments,
69
+ # )
70
+
71
+ # model_name = "clementdesroches/distilbert_climate_ai"
72
+ # tokenizer = AutoTokenizer.from_pretrained(model_name)
73
+ # model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(LABEL_MAPPING))
74
+
75
+ # # Tokenize the datasets
76
+ # def tokenize_function(examples):
77
+ # return tokenizer(examples["quote"], padding="max_length", truncation=True)
78
+
79
+ # tokenized_test_dataset = test_dataset.map(tokenize_function, batched=True)
80
+
81
+ # # Set training arguments
82
+ # training_args = TrainingArguments(
83
+ # output_dir="./bert_classification_results",
84
+ # evaluation_strategy="epoch",
85
+ # save_strategy="epoch",
86
+ # learning_rate=2e-5,
87
+ # per_device_train_batch_size=8,
88
+ # per_device_eval_batch_size=8,
89
+ # num_train_epochs=30,
90
+ # weight_decay=0.01,
91
+ # load_best_model_at_end=True,
92
+ # )
93
+
94
+ # # Initialize the Trainer
95
+ # trainer = Trainer(
96
+ # model=model,
97
+ # args=training_args,
98
+ # eval_dataset=tokenized_test_dataset,
99
+ # tokenizer=tokenizer,
100
+ # )
101
+
102
+ # import numpy as np
103
+
104
+ # preds = trainer.predict(tokenized_test_dataset)
105
+
106
+ # predictions = np.array([np.argmax(x) for x in preds[0]])
107
+ predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
108
 
109
  # --------------------------------------------------------------------------------------------
110
  # YOUR MODEL INFERENCE STOPS HERE