clemdesr
commited on
Commit
·
f4e2c1f
1
Parent(s):
9685f7b
feat: initial commit
Browse files- poetry.lock +0 -0
- pyproject.toml +24 -0
- tasks/text.py +21 -21
poetry.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pyproject.toml
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "submission-template"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = ""
|
5 |
+
authors = ["clemdesr <[email protected]>"]
|
6 |
+
readme = "README.md"
|
7 |
+
|
8 |
+
[tool.poetry.dependencies]
|
9 |
+
python = "^3.11"
|
10 |
+
fastapi = ">=0.68.0"
|
11 |
+
uvicorn = ">=0.15.0"
|
12 |
+
codecarbon = ">=2.3.1"
|
13 |
+
datasets = ">=2.14.0"
|
14 |
+
scikit-learn = ">=1.0.2"
|
15 |
+
pydantic = ">=1.10.0"
|
16 |
+
python-dotenv = ">=1.0.0"
|
17 |
+
gradio = ">=4.0.0"
|
18 |
+
requests = ">=2.31.0"
|
19 |
+
librosa = "0.10.2.post1"
|
20 |
+
|
21 |
+
|
22 |
+
[build-system]
|
23 |
+
requires = ["poetry-core"]
|
24 |
+
build-backend = "poetry.core.masonry.api"
|
tasks/text.py
CHANGED
@@ -1,23 +1,24 @@
|
|
1 |
-
|
2 |
from datetime import datetime
|
|
|
3 |
from datasets import load_dataset
|
|
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
-
import random
|
6 |
|
|
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
-
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
10 |
router = APIRouter()
|
11 |
|
12 |
-
DESCRIPTION = "
|
13 |
ROUTE = "/text"
|
14 |
|
15 |
-
|
16 |
-
|
17 |
async def evaluate_text(request: TextEvaluationRequest):
|
18 |
"""
|
19 |
Evaluate text classification for climate disinformation detection.
|
20 |
-
|
21 |
Current Model: Random Baseline
|
22 |
- Makes random predictions from the label space (0-7)
|
23 |
- Used as a baseline for comparison
|
@@ -34,7 +35,7 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
34 |
"4_solutions_harmful_unnecessary": 4,
|
35 |
"5_science_unreliable": 5,
|
36 |
"6_proponents_biased": 6,
|
37 |
-
"7_fossil_fuels_needed": 7
|
38 |
}
|
39 |
|
40 |
# Load and prepare the dataset
|
@@ -46,31 +47,30 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
46 |
# Split dataset
|
47 |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
48 |
test_dataset = train_test["test"]
|
49 |
-
|
50 |
# Start tracking emissions
|
51 |
tracker.start()
|
52 |
tracker.start_task("inference")
|
53 |
|
54 |
-
|
55 |
# YOUR MODEL INFERENCE CODE HERE
|
56 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
57 |
-
|
58 |
-
|
59 |
# Make random predictions (placeholder for actual model inference)
|
60 |
true_labels = test_dataset["label"]
|
61 |
predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
62 |
|
63 |
-
|
64 |
# YOUR MODEL INFERENCE STOPS HERE
|
65 |
-
|
66 |
|
67 |
-
|
68 |
# Stop tracking emissions
|
69 |
emissions_data = tracker.stop_task()
|
70 |
-
|
71 |
# Calculate accuracy
|
72 |
accuracy = accuracy_score(true_labels, predictions)
|
73 |
-
|
74 |
# Prepare results dictionary
|
75 |
results = {
|
76 |
"username": username,
|
@@ -85,8 +85,8 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
85 |
"dataset_config": {
|
86 |
"dataset_name": request.dataset_name,
|
87 |
"test_size": request.test_size,
|
88 |
-
"test_seed": request.test_seed
|
89 |
-
}
|
90 |
}
|
91 |
-
|
92 |
-
return results
|
|
|
1 |
+
import random
|
2 |
from datetime import datetime
|
3 |
+
|
4 |
from datasets import load_dataset
|
5 |
+
from fastapi import APIRouter
|
6 |
from sklearn.metrics import accuracy_score
|
|
|
7 |
|
8 |
+
from .utils.emissions import clean_emissions_data, get_space_info, tracker
|
9 |
from .utils.evaluation import TextEvaluationRequest
|
|
|
10 |
|
11 |
router = APIRouter()
|
12 |
|
13 |
+
DESCRIPTION = "Setup Baseline"
|
14 |
ROUTE = "/text"
|
15 |
|
16 |
+
|
17 |
+
@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
|
18 |
async def evaluate_text(request: TextEvaluationRequest):
|
19 |
"""
|
20 |
Evaluate text classification for climate disinformation detection.
|
21 |
+
|
22 |
Current Model: Random Baseline
|
23 |
- Makes random predictions from the label space (0-7)
|
24 |
- Used as a baseline for comparison
|
|
|
35 |
"4_solutions_harmful_unnecessary": 4,
|
36 |
"5_science_unreliable": 5,
|
37 |
"6_proponents_biased": 6,
|
38 |
+
"7_fossil_fuels_needed": 7,
|
39 |
}
|
40 |
|
41 |
# Load and prepare the dataset
|
|
|
47 |
# Split dataset
|
48 |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
49 |
test_dataset = train_test["test"]
|
50 |
+
|
51 |
# Start tracking emissions
|
52 |
tracker.start()
|
53 |
tracker.start_task("inference")
|
54 |
|
55 |
+
# --------------------------------------------------------------------------------------------
|
56 |
# YOUR MODEL INFERENCE CODE HERE
|
57 |
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
58 |
+
# --------------------------------------------------------------------------------------------
|
59 |
+
|
60 |
# Make random predictions (placeholder for actual model inference)
|
61 |
true_labels = test_dataset["label"]
|
62 |
predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
63 |
|
64 |
+
# --------------------------------------------------------------------------------------------
|
65 |
# YOUR MODEL INFERENCE STOPS HERE
|
66 |
+
# --------------------------------------------------------------------------------------------
|
67 |
|
|
|
68 |
# Stop tracking emissions
|
69 |
emissions_data = tracker.stop_task()
|
70 |
+
|
71 |
# Calculate accuracy
|
72 |
accuracy = accuracy_score(true_labels, predictions)
|
73 |
+
|
74 |
# Prepare results dictionary
|
75 |
results = {
|
76 |
"username": username,
|
|
|
85 |
"dataset_config": {
|
86 |
"dataset_name": request.dataset_name,
|
87 |
"test_size": request.test_size,
|
88 |
+
"test_seed": request.test_seed,
|
89 |
+
},
|
90 |
}
|
91 |
+
|
92 |
+
return results
|