File size: 4,821 Bytes
a0497a5
 
 
3aae85b
 
b8e8c93
82d6c9a
3aae85b
b8e8c93
 
 
 
 
 
 
 
 
 
 
 
 
 
3aae85b
b8e8c93
 
 
 
 
 
a0497a5
3aae85b
743aac4
 
 
 
8b42620
3aae85b
 
8b42620
 
 
 
 
3aae85b
d38c074
 
 
 
 
 
 
 
 
 
 
3aae85b
a0497a5
82d6c9a
8a7bf5e
82d6c9a
 
 
 
 
a0497a5
 
 
82d6c9a
 
 
3aae85b
82d6c9a
 
 
b8e8c93
a0497a5
 
 
 
 
 
3aae85b
 
 
 
743aac4
3aae85b
 
a0497a5
 
b8e8c93
a0497a5
 
 
 
 
 
3aae85b
 
8b42620
3aae85b
743aac4
3aae85b
 
a0497a5
 
b8e8c93
a0497a5
 
 
 
 
3aae85b
743aac4
 
8b42620
743aac4
 
 
 
3aae85b
 
743aac4
3aae85b
743aac4
3aae85b
 
 
 
8b42620
 
 
 
 
 
 
3aae85b
 
 
 
 
 
 
 
a0497a5
 
b8e8c93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import gradio as gr
import pandas as pd

dataframe = pd.read_csv('data/general.csv')

NUM_DATASETS = 7
NUM_SCORES = 0
NUM_MODELS = len(dataframe)

def general_dataframe_update():
    """
    Returns general dataframe for general table. 
    """
    dataframe = pd.read_csv('data/general.csv')
    return dataframe

def classification_dataframe_update():
    """
    Returns classification dataframe for classification table. 
    """
    dataframe = pd.read_csv('data/classification.csv')
    return dataframe

def sts_dataframe_udpate():
    """
    Returns sts dataframe for sts table. 
    """
    dataframe = pd.read_csv('data/sts.csv')
    return dataframe

def clustering_dataframe_update():
    """
    Returns clustering dataframe for clustering table. 
    """
    dataframe = pd.read_csv("data/clustering.csv")
    return dataframe 

def retrieval_dataframe_update():
    """
    Returns retrieval dataframe for retrieval table.
    """
    dataframe = pd.read_csv('data/retrieval.csv')
    return dataframe

def make_clickable_model(link):
    """
    Load json from models. Este update lo tengo que hacer antes de pasarle el df al gradio. 
    """
    model_display_name = link.split("/")[-1]
    # Remove user from model name
    return (
        f'<a target="_blank" style="text-decoration: underline" href="{link}">{model_display_name.split("/")[-1]}</a>'
    )
    

block = gr.Blocks()
with block:
    gr.Markdown(f"""**Leaderboard de modelos de Embeddings en español
    Massive Spanish Text Embedding Benchmark (MSTEB) Leaderboard.**
    - **Total Datasets**: {NUM_DATASETS}
    - **Total Languages**: 1
    - **Total Scores**: {NUM_SCORES}
    - **Total Models**: {NUM_MODELS}
    """)
    with gr.Tabs():
        with gr.TabItem("Overall"):
            with gr.Row():
                    gr.Markdown("""
                    **Tabla General de Embeddings**
                    
                    - **Métricas:** Varias, con sus respectivas medias.
                    - **Idioma:** Español
                    """)
            with gr.Row():
                overall = general_dataframe_update()
                data_overall = gr.components.Dataframe(
                        overall,
                        type="pandas",
                        wrap=True,
                    )
        with gr.TabItem("Classification"):
            with gr.Row():
                    gr.Markdown("""
                    **Tabla Classification de Embeddings**
                    
                    - **Métricas:** Accuracy. 
                    - **Idioma:** Español
                    """)
            with gr.Row():
                # Create and display a sample DataFrame
                classification = classification_dataframe_update()
                data_overall = gr.components.Dataframe(
                        classification,
                        type="pandas",
                        wrap=True,
                    )
        with gr.TabItem("STS"):
            with gr.Row():
                    gr.Markdown("""
                    **Tabla STS de Embeddings**
                    
                    - **Metricas:** Spearman correlation basada en cosine similarity. 
                    - **Idioma:** Español
                    """)
            with gr.Row():
                # Create and display a sample DataFrame
                sts = sts_dataframe_udpate()
                data_overall = gr.components.Dataframe(
                        sts,
                        type="pandas",
                        wrap=True,
                    )
        with gr.TabItem("Clustering"):
            with gr.Row():
                    gr.Markdown("""
                    **Tabla Clustering de Embeddings**
                    
                    - **Metricas:** V_measure.
                    - **Idioma:** Español
                    """)
            with gr.Row():
                # Create and display a sample DataFrame
                clustering = clustering_dataframe_update()
                data_overall = gr.components.Dataframe(
                        clustering,
                        type="pandas",
                        wrap=True,
                    )
        with gr.TabItem("Retrieval"):
            with gr.Row():
                    gr.Markdown("""
                    **Tabla Retrieval de Embeddings**
                    
                    - **Metricas:** ncdg_10.
                    - **Idioma:** Español
                    """)
            with gr.Row():
                # Create and display a sample DataFrame
                sts = retrieval_dataframe_update()
                data_overall = gr.components.Dataframe(
                        sts,
                        type="pandas",
                        wrap=True,
                    )

block.launch()