clockclock commited on
Commit
25e6b09
Β·
verified Β·
1 Parent(s): 1b80388

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +142 -68
app.py CHANGED
@@ -19,109 +19,169 @@ plt.style.use('default')
19
  sns.set_palette("husl")
20
 
21
  class EnhancedAIvsRealGazeAnalyzer:
 
 
 
 
 
22
  def __init__(self):
23
  self.questions = ['Q1', 'Q2', 'Q3', 'Q4', 'Q5', 'Q6']
24
  self.correct_answers = {'Pair1': 'B', 'Pair2': 'B', 'Pair3': 'B', 'Pair4': 'B', 'Pair5': 'B', 'Pair6': 'B'}
25
  self.combined_data = None
26
- self.response_data = None
27
- self.numeric_cols = []
28
- self.time_metrics = []
 
 
 
29
 
30
  def load_and_process_data(self, base_path, response_file):
 
31
  print("Loading and processing data...")
32
  self.response_data = pd.read_excel(response_file) if response_file.endswith('.xlsx') else pd.read_csv(response_file)
33
  self.response_data.columns = self.response_data.columns.str.strip()
34
- for pair, correct_answer in self.correct_answers.items():
35
- if pair in self.response_data.columns:
36
- self.response_data[f'{pair}_Correct'] = (self.response_data[pair].astype(str).str.strip().str.upper() == correct_answer)
37
  all_data = {}
38
  for question in self.questions:
39
  file_path = f"{base_path}/Filtered_GenAI_Metrics_cleaned_{question}.xlsx"
40
  if os.path.exists(file_path):
41
  xls = pd.ExcelFile(file_path)
42
  all_data[question] = {sheet_name: pd.read_excel(xls, sheet_name) for sheet_name in xls.sheet_names}
 
43
  all_dfs = [df.copy().assign(Question=q, Metric_Type=m) for q, qd in all_data.items() for m, df in qd.items()]
44
- if not all_dfs: raise ValueError("No eye-tracking data files were found or loaded.")
 
45
  self.combined_data = pd.concat(all_dfs, ignore_index=True)
46
  self.combined_data.columns = self.combined_data.columns.str.strip()
47
- et_id_col = next((c for c in self.combined_data.columns if 'participant' in c.lower()), None)
48
- resp_id_col = next((c for c in self.response_data.columns if 'participant' in c.lower()), None)
 
 
 
 
 
 
 
49
  response_long = self.response_data.melt(id_vars=[resp_id_col], value_vars=self.correct_answers.keys(), var_name='Pair', value_name='Response')
50
  correctness_long = self.response_data.melt(id_vars=[resp_id_col], value_vars=[f'{p}_Correct' for p in self.correct_answers.keys()], var_name='Pair_Correct_Col', value_name='Correct')
51
  correctness_long['Pair'] = correctness_long['Pair_Correct_Col'].str.replace('_Correct', '')
52
  response_long = response_long.merge(correctness_long[[resp_id_col, 'Pair', 'Correct']], on=[resp_id_col, 'Pair'])
 
53
  q_to_pair = {f'Q{i+1}': f'Pair{i+1}' for i in range(6)}
54
  self.combined_data['Pair'] = self.combined_data['Question'].map(q_to_pair)
55
- self.combined_data = self.combined_data.merge(response_long, left_on=[et_id_col, 'Pair'], right_on=[resp_id_col, 'Pair'], how='left')
56
  self.combined_data['Answer_Correctness'] = self.combined_data['Correct'].map({True: 'Correct', False: 'Incorrect'})
 
57
  self.numeric_cols = self.combined_data.select_dtypes(include=np.number).columns.tolist()
58
  self.time_metrics = [c for c in self.numeric_cols if any(k in c.lower() for k in ['time', 'duration', 'fixation'])]
 
 
 
 
59
  print("Data loading complete.")
60
  return self
61
 
62
  def analyze_rq1_metric(self, metric):
63
- if metric not in self.combined_data.columns: return None, "Metric not found."
 
64
  correct = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Correct', metric].dropna()
65
  incorrect = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Incorrect', metric].dropna()
66
  t_stat, p_val = stats.ttest_ind(incorrect, correct, equal_var=False, nan_policy='omit')
67
- fig, ax = plt.subplots(figsize=(8, 6))
68
- sns.boxplot(data=self.combined_data, x='Answer_Correctness', y=metric, ax=ax, palette=['#66b3ff','#ff9999'])
69
- ax.set_title(f'Comparison of "{metric}" by Answer Correctness', fontsize=14)
70
- ax.set_xlabel("Answer Correctness")
71
- ax.set_ylabel(metric)
72
- plt.tight_layout()
73
- summary = f"""### Analysis for: **{metric}**\n- **Mean (Correct Answers):** {correct.mean():.4f}\n- **Mean (Incorrect Answers):** {incorrect.mean():.4f}\n- **T-test p-value:** {p_val:.4f}\n\n**Conclusion:**\n- {'There is a **statistically significant** difference between the groups (p < 0.05).' if p_val < 0.05 else 'There is **no statistically significant** difference between the groups (p >= 0.05).'}"""
74
  return fig, summary
75
 
76
  def run_prediction_model(self, test_size, n_estimators):
77
- leaky_features = ['Total_Correct', 'Overall_Accuracy', 'Correct']
78
- features_to_use = [col for col in self.numeric_cols if col not in leaky_features]
79
- features = self.combined_data[features_to_use].copy()
 
80
  target = self.combined_data['Answer_Correctness'].map({'Correct': 1, 'Incorrect': 0})
81
  valid_indices = target.notna()
82
  features, target = features[valid_indices], target[valid_indices]
83
  features = features.fillna(features.median()).fillna(0)
84
- if len(target.unique()) < 2: return "Not enough classes to train.", None, None
85
  X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=test_size, random_state=42, stratify=target)
86
- scaler = StandardScaler()
87
- X_train_scaled, X_test_scaled = scaler.fit_transform(X_train), scaler.transform(X_test)
88
- model = RandomForestClassifier(n_estimators=n_estimators, random_state=42, class_weight='balanced')
89
- model.fit(X_train_scaled, y_train)
90
- y_pred = model.predict(X_test_scaled)
91
- report = classification_report(y_test, y_pred, target_names=['Incorrect', 'Correct'], output_dict=True)
92
- auc_score = roc_auc_score(y_test, model.predict_proba(X_test_scaled)[:, 1])
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
- # --- THIS IS THE KEY FIX ---
95
- # 1. Create the summary text separately.
 
 
 
 
 
 
 
 
96
  summary_md = f"""
97
- ### Model Performance
98
- - **AUC Score:** **{auc_score:.4f}**
99
- - **Overall Accuracy:** {report['accuracy']:.3f}
100
  """
101
- # 2. Create the report DataFrame.
102
- report_df = pd.DataFrame(report).transpose().round(3)
 
 
 
103
 
104
- # 3. Create the feature importance plot.
105
- feature_importance = pd.DataFrame({'Feature': features.columns, 'Importance': model.feature_importances_})
106
- feature_importance = feature_importance.sort_values('Importance', ascending=False).head(15)
107
- fig, ax = plt.subplots(figsize=(10, 8))
108
- sns.barplot(data=feature_importance, x='Importance', y='Feature', ax=ax, palette='viridis')
109
- ax.set_title(f'Top 15 Predictive Features (n_estimators={n_estimators})', fontsize=14)
 
 
 
 
 
 
110
  plt.tight_layout()
 
 
 
 
111
 
112
- # 4. Return the three items separately.
113
- return summary_md, report_df, fig
114
- # --- END OF FIX ---
 
 
 
 
 
 
 
 
115
 
116
- # --- DATA SETUP ---
117
  def setup_and_load_data():
 
118
  repo_url = "https://github.com/RextonRZ/GenAIEyeTrackingCleanedDataset"
119
  repo_dir = "GenAIEyeTrackingCleanedDataset"
120
  if not os.path.exists(repo_dir):
121
  print(f"Cloning data repository from {repo_url}...")
122
  git.Repo.clone_from(repo_url, repo_dir)
123
  else:
124
- print("Data repository already. Skipping clone.")
125
  base_path = repo_dir
126
  response_file = os.path.join(repo_dir, "GenAI Response.xlsx")
127
  analyzer = EnhancedAIvsRealGazeAnalyzer().load_and_process_data(base_path, response_file)
@@ -133,26 +193,26 @@ print("Application setup complete. Ready for interaction.")
133
 
134
  # --- GRADIO INTERACTIVE FUNCTIONS ---
135
  def update_rq1_visuals(metric_choice):
136
- if not metric_choice: return None, "Please select a metric from the dropdown."
137
  plot, summary = analyzer.analyze_rq1_metric(metric_choice)
138
  return plot, summary
139
 
140
  def update_rq2_model(test_size, n_estimators):
141
  n_estimators = int(n_estimators)
142
- # The function now returns three items
143
  summary, report_df, plot = analyzer.run_prediction_model(test_size, n_estimators)
144
  return summary, report_df, plot
145
 
146
- # --- GRADIO INTERFACE DEFINITION ---
147
- description = """
148
- # Interactive Dashboard: AI vs. Real Gaze Analysis
149
- Explore the eye-tracking dataset by interacting with the controls below. The data is automatically loaded from the public GitHub repository.
150
- """
151
 
 
152
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
153
- gr.Markdown(description)
 
154
  with gr.Tabs():
155
- with gr.TabItem("RQ1: Viewing Time vs. Correctness"):
 
156
  with gr.Row():
157
  with gr.Column(scale=1):
158
  rq1_metric_dropdown = gr.Dropdown(choices=analyzer.time_metrics, label="Select a Time-Based Metric", value=analyzer.time_metrics[0] if analyzer.time_metrics else None)
@@ -160,34 +220,48 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
160
  with gr.Column(scale=2):
161
  rq1_plot_output = gr.Plot(label="Metric Comparison")
162
 
163
- with gr.TabItem("RQ2: Predicting Correctness from Gaze"):
 
164
  with gr.Row():
165
  with gr.Column(scale=1):
166
  gr.Markdown("#### Tune Model Hyperparameters")
167
  rq2_test_size_slider = gr.Slider(minimum=0.1, maximum=0.5, step=0.05, value=0.3, label="Test Set Size")
168
  rq2_estimators_slider = gr.Slider(minimum=10, maximum=200, step=10, value=100, label="Number of Trees (n_estimators)")
169
-
170
- # --- THIS IS THE KEY UI FIX ---
171
  with gr.Column(scale=2):
172
- # 1. A Markdown component for the summary text.
173
  rq2_summary_output = gr.Markdown(label="Model Performance Summary")
174
- # 2. A Dataframe component for the table.
175
  rq2_table_output = gr.Dataframe(label="Classification Report", interactive=False)
176
- # 3. A Plot component for the chart.
177
  rq2_plot_output = gr.Plot(label="Feature Importance")
178
- # --- END OF UI FIX ---
179
-
180
- # --- THIS IS THE KEY WIRING FIX ---
181
- # The outputs list now has 3 items to match the 3 components
182
- outputs_rq2 = [rq2_summary_output, rq2_table_output, rq2_plot_output]
 
 
 
 
 
 
 
183
 
 
 
 
 
 
184
  rq1_metric_dropdown.change(fn=update_rq1_visuals, inputs=[rq1_metric_dropdown], outputs=[rq1_plot_output, rq1_summary_output])
 
 
185
  rq2_test_size_slider.release(fn=update_rq2_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq2)
186
  rq2_estimators_slider.release(fn=update_rq2_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq2)
187
 
 
 
 
 
 
188
  demo.load(fn=update_rq1_visuals, inputs=[rq1_metric_dropdown], outputs=[rq1_plot_output, rq1_summary_output])
189
  demo.load(fn=update_rq2_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq2)
190
- # --- END OF WIRING FIX ---
191
 
192
  if __name__ == "__main__":
193
  demo.launch()
 
19
  sns.set_palette("husl")
20
 
21
  class EnhancedAIvsRealGazeAnalyzer:
22
+ """
23
+ A comprehensive class to load, process, and analyze eye-tracking data.
24
+ It supports statistical analysis (RQ1), predictive modeling (RQ2),
25
+ and deep-dive exploration of individual trials.
26
+ """
27
  def __init__(self):
28
  self.questions = ['Q1', 'Q2', 'Q3', 'Q4', 'Q5', 'Q6']
29
  self.correct_answers = {'Pair1': 'B', 'Pair2': 'B', 'Pair3': 'B', 'Pair4': 'B', 'Pair5': 'B', 'Pair6': 'B'}
30
  self.combined_data = None
31
+ self.participant_list = []
32
+ self.model = None
33
+ self.scaler = None
34
+ self.feature_names = []
35
+ self.group_means = None
36
+ self.et_id_col = 'Participant name' # Default participant ID column name
37
 
38
  def load_and_process_data(self, base_path, response_file):
39
+ """Loads all data from files and preprocesses it for analysis."""
40
  print("Loading and processing data...")
41
  self.response_data = pd.read_excel(response_file) if response_file.endswith('.xlsx') else pd.read_csv(response_file)
42
  self.response_data.columns = self.response_data.columns.str.strip()
43
+
 
 
44
  all_data = {}
45
  for question in self.questions:
46
  file_path = f"{base_path}/Filtered_GenAI_Metrics_cleaned_{question}.xlsx"
47
  if os.path.exists(file_path):
48
  xls = pd.ExcelFile(file_path)
49
  all_data[question] = {sheet_name: pd.read_excel(xls, sheet_name) for sheet_name in xls.sheet_names}
50
+
51
  all_dfs = [df.copy().assign(Question=q, Metric_Type=m) for q, qd in all_data.items() for m, df in qd.items()]
52
+ if not all_dfs: raise ValueError("No eye-tracking data files were found.")
53
+
54
  self.combined_data = pd.concat(all_dfs, ignore_index=True)
55
  self.combined_data.columns = self.combined_data.columns.str.strip()
56
+
57
+ # Dynamically find participant ID columns
58
+ self.et_id_col = next((c for c in self.combined_data.columns if 'participant' in c.lower()), 'Participant name')
59
+ resp_id_col = next((c for c in self.response_data.columns if 'participant' in c.lower()), 'Participant name')
60
+
61
+ for pair, correct_answer in self.correct_answers.items():
62
+ if pair in self.response_data.columns:
63
+ self.response_data[f'{pair}_Correct'] = (self.response_data[pair].astype(str).str.strip().str.upper() == correct_answer)
64
+
65
  response_long = self.response_data.melt(id_vars=[resp_id_col], value_vars=self.correct_answers.keys(), var_name='Pair', value_name='Response')
66
  correctness_long = self.response_data.melt(id_vars=[resp_id_col], value_vars=[f'{p}_Correct' for p in self.correct_answers.keys()], var_name='Pair_Correct_Col', value_name='Correct')
67
  correctness_long['Pair'] = correctness_long['Pair_Correct_Col'].str.replace('_Correct', '')
68
  response_long = response_long.merge(correctness_long[[resp_id_col, 'Pair', 'Correct']], on=[resp_id_col, 'Pair'])
69
+
70
  q_to_pair = {f'Q{i+1}': f'Pair{i+1}' for i in range(6)}
71
  self.combined_data['Pair'] = self.combined_data['Question'].map(q_to_pair)
72
+ self.combined_data = self.combined_data.merge(response_long, left_on=[self.et_id_col, 'Pair'], right_on=[resp_id_col, 'Pair'], how='left')
73
  self.combined_data['Answer_Correctness'] = self.combined_data['Correct'].map({True: 'Correct', False: 'Incorrect'})
74
+
75
  self.numeric_cols = self.combined_data.select_dtypes(include=np.number).columns.tolist()
76
  self.time_metrics = [c for c in self.numeric_cols if any(k in c.lower() for k in ['time', 'duration', 'fixation'])]
77
+ self.participant_list = sorted(self.combined_data[self.et_id_col].unique().tolist())
78
+
79
+ # Pre-calculate group means for the explorer tab
80
+ self.group_means = self.combined_data.groupby('Answer_Correctness')[self.numeric_cols].mean()
81
  print("Data loading complete.")
82
  return self
83
 
84
  def analyze_rq1_metric(self, metric):
85
+ """Analyzes a single metric for RQ1."""
86
+ if not metric: return None, "Metric not found."
87
  correct = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Correct', metric].dropna()
88
  incorrect = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Incorrect', metric].dropna()
89
  t_stat, p_val = stats.ttest_ind(incorrect, correct, equal_var=False, nan_policy='omit')
90
+ fig, ax = plt.subplots(figsize=(8, 6)); sns.boxplot(data=self.combined_data, x='Answer_Correctness', y=metric, ax=ax, palette=['#66b3ff','#ff9999']); ax.set_title(f'Comparison of "{metric}" by Answer Correctness', fontsize=14); ax.set_xlabel("Answer Correctness"); ax.set_ylabel(metric); plt.tight_layout()
91
+ summary = f"""### Analysis for: **{metric}**\n- **Mean (Correct Answers):** {correct.mean():.4f}\n- **Mean (Incorrect Answers):** {incorrect.mean():.4f}\n- **T-test p-value:** {p_val:.4f}\n\n**Conclusion:**\n- {'There is a **statistically significant** difference (p < 0.05).' if p_val < 0.05 else 'There is **no statistically significant** difference (p >= 0.05).'}"""
 
 
 
 
 
92
  return fig, summary
93
 
94
  def run_prediction_model(self, test_size, n_estimators):
95
+ """Trains and evaluates the RandomForest model for RQ2."""
96
+ leaky_features = ['Total_Correct', 'Overall_Accuracy', 'Correct', self.et_id_col]
97
+ self.feature_names = [col for col in self.numeric_cols if col not in leaky_features and col in self.combined_data.columns]
98
+ features = self.combined_data[self.feature_names].copy()
99
  target = self.combined_data['Answer_Correctness'].map({'Correct': 1, 'Incorrect': 0})
100
  valid_indices = target.notna()
101
  features, target = features[valid_indices], target[valid_indices]
102
  features = features.fillna(features.median()).fillna(0)
 
103
  X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=test_size, random_state=42, stratify=target)
104
+ self.scaler = StandardScaler().fit(X_train)
105
+ X_train_scaled, X_test_scaled = self.scaler.transform(X_train), self.scaler.transform(X_test)
106
+ self.model = RandomForestClassifier(n_estimators=n_estimators, random_state=42, class_weight='balanced').fit(X_train_scaled, y_train)
107
+ report = classification_report(y_test, self.model.predict(X_test_scaled), target_names=['Incorrect', 'Correct'], output_dict=True)
108
+ auc_score = roc_auc_score(y_test, self.model.predict_proba(X_test_scaled)[:, 1])
109
+ summary_md = f"### Model Performance\n- **AUC Score:** **{auc_score:.4f}**\n- **Overall Accuracy:** {report['accuracy']:.3f}"
110
+ report_df = pd.DataFrame(report).transpose().round(3)
111
+ feature_importance = pd.DataFrame({'Feature': self.feature_names, 'Importance': self.model.feature_importances_}).sort_values('Importance', ascending=False).head(15)
112
+ fig, ax = plt.subplots(figsize=(10, 8)); sns.barplot(data=feature_importance, x='Importance', y='Feature', ax=ax, palette='viridis'); ax.set_title(f'Top 15 Predictive Features (n_estimators={n_estimators})', fontsize=14); plt.tight_layout()
113
+ return summary_md, report_df, fig
114
+
115
+ def analyze_individual_trial(self, participant, question):
116
+ """Generates a detailed report for a single participant-question trial."""
117
+ if not participant or not question:
118
+ return "Please select a participant and a question.", None, None
119
+
120
+ trial_data = self.combined_data[(self.combined_data[self.et_id_col] == participant) & (self.combined_data['Question'] == question)]
121
+ if trial_data.empty:
122
+ return f"No data found for {participant} on {question}.", None, None
123
 
124
+ trial_data = trial_data.iloc[0]
125
+ actual_answer = trial_data['Answer_Correctness']
126
+
127
+ # Model Prediction for this specific trial
128
+ trial_features = trial_data[self.feature_names].values.reshape(1, -1)
129
+ trial_features_scaled = self.scaler.transform(trial_features)
130
+ prediction_prob = self.model.predict_proba(trial_features_scaled)[0]
131
+ predicted_answer = "Correct" if prediction_prob[1] > 0.5 else "Incorrect"
132
+
133
+ # Summary Text
134
  summary_md = f"""
135
+ ### Trial Breakdown: **{participant}** on **{question}**
136
+ - **Actual Answer:** `{actual_answer}`
137
+ - **Model Prediction:** `{predicted_answer}` (Confidence: {max(prediction_prob)*100:.1f}%)
138
  """
139
+
140
+ # A vs B Gaze Bias Plot
141
+ aoi_cols = [c for c in self.feature_names if ' A' in c or ' B' in c]
142
+ a_cols = sorted([c for c in aoi_cols if ' A' in c])
143
+ b_cols = sorted([c for c in aoi_cols if ' B' in c])
144
 
145
+ plot_data = []
146
+ for a_col, b_col in zip(a_cols, b_cols):
147
+ base_name = a_col.replace(' A', '')
148
+ plot_data.append({'AOI': base_name, 'Image': 'A', 'Value': trial_data[a_col]})
149
+ plot_data.append({'AOI': base_name, 'Image': 'B', 'Value': trial_data[b_col]})
150
+
151
+ fig, ax = plt.subplots(figsize=(10, 6))
152
+ if plot_data:
153
+ sns.barplot(data=pd.DataFrame(plot_data), x='Value', y='AOI', hue='Image', ax=ax, palette={'A': '#66b3ff', 'B': '#ff9999'})
154
+ ax.set_title(f'Gaze Bias: Image A vs. Image B for {question}')
155
+ else:
156
+ ax.text(0.5, 0.5, 'No A/B Area of Interest data for this question.', ha='center')
157
  plt.tight_layout()
158
+
159
+ # Feature Report Card
160
+ top_features = self.model.feature_importances_.argsort()[-5:][::-1]
161
+ top_feature_names = [self.feature_names[i] for i in top_features]
162
 
163
+ report_card_data = []
164
+ for feature in top_feature_names:
165
+ report_card_data.append({
166
+ 'Top Feature': feature,
167
+ 'This Trial Value': f"{trial_data[feature]:.2f}",
168
+ 'Avg (Correct)': f"{self.group_means.loc['Correct', feature]:.2f}",
169
+ 'Avg (Incorrect)': f"{self.group_means.loc['Incorrect', feature]:.2f}"
170
+ })
171
+ report_card_df = pd.DataFrame(report_card_data)
172
+
173
+ return summary_md, fig, report_card_df
174
 
175
+ # --- DATA SETUP (RUNS ONCE AT STARTUP) ---
176
  def setup_and_load_data():
177
+ """Clones the repo if not present and loads data."""
178
  repo_url = "https://github.com/RextonRZ/GenAIEyeTrackingCleanedDataset"
179
  repo_dir = "GenAIEyeTrackingCleanedDataset"
180
  if not os.path.exists(repo_dir):
181
  print(f"Cloning data repository from {repo_url}...")
182
  git.Repo.clone_from(repo_url, repo_dir)
183
  else:
184
+ print("Data repository already exists. Skipping clone.")
185
  base_path = repo_dir
186
  response_file = os.path.join(repo_dir, "GenAI Response.xlsx")
187
  analyzer = EnhancedAIvsRealGazeAnalyzer().load_and_process_data(base_path, response_file)
 
193
 
194
  # --- GRADIO INTERACTIVE FUNCTIONS ---
195
  def update_rq1_visuals(metric_choice):
196
+ if not metric_choice: return None, "Please select a metric."
197
  plot, summary = analyzer.analyze_rq1_metric(metric_choice)
198
  return plot, summary
199
 
200
  def update_rq2_model(test_size, n_estimators):
201
  n_estimators = int(n_estimators)
 
202
  summary, report_df, plot = analyzer.run_prediction_model(test_size, n_estimators)
203
  return summary, report_df, plot
204
 
205
+ def update_explorer_view(participant, question):
206
+ summary, plot, report_card = analyzer.analyze_individual_trial(participant, question)
207
+ return summary, plot, report_card
 
 
208
 
209
+ # --- GRADIO INTERFACE DEFINITION ---
210
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
211
+ gr.Markdown("# Interactive Dashboard: AI vs. Real Gaze Analysis\nExplore the eye-tracking dataset by interacting with the controls below. The data is automatically loaded from the public GitHub repository.")
212
+
213
  with gr.Tabs():
214
+ # --- TAB 1: RQ1 ---
215
+ with gr.TabItem("πŸ“Š RQ1: Viewing Time vs. Correctness"):
216
  with gr.Row():
217
  with gr.Column(scale=1):
218
  rq1_metric_dropdown = gr.Dropdown(choices=analyzer.time_metrics, label="Select a Time-Based Metric", value=analyzer.time_metrics[0] if analyzer.time_metrics else None)
 
220
  with gr.Column(scale=2):
221
  rq1_plot_output = gr.Plot(label="Metric Comparison")
222
 
223
+ # --- TAB 2: RQ2 ---
224
+ with gr.TabItem("πŸ€– RQ2: Predicting Correctness from Gaze"):
225
  with gr.Row():
226
  with gr.Column(scale=1):
227
  gr.Markdown("#### Tune Model Hyperparameters")
228
  rq2_test_size_slider = gr.Slider(minimum=0.1, maximum=0.5, step=0.05, value=0.3, label="Test Set Size")
229
  rq2_estimators_slider = gr.Slider(minimum=10, maximum=200, step=10, value=100, label="Number of Trees (n_estimators)")
 
 
230
  with gr.Column(scale=2):
 
231
  rq2_summary_output = gr.Markdown(label="Model Performance Summary")
 
232
  rq2_table_output = gr.Dataframe(label="Classification Report", interactive=False)
 
233
  rq2_plot_output = gr.Plot(label="Feature Importance")
234
+
235
+ # --- TAB 3: INNOVATIVE EXPLORER ---
236
+ with gr.TabItem("πŸ”¬ Individual Trial Explorer"):
237
+ gr.Markdown("### Deep Dive into a Single Trial\nSelect a participant and a question to see a detailed breakdown of their gaze behavior.")
238
+ with gr.Row():
239
+ with gr.Column(scale=1):
240
+ explorer_participant = gr.Dropdown(choices=analyzer.participant_list, label="Select Participant")
241
+ explorer_question = gr.Dropdown(choices=analyzer.questions, label="Select Question")
242
+ explorer_summary = gr.Markdown(label="Trial Summary")
243
+ explorer_report_card = gr.Dataframe(label="Feature Report Card", interactive=False)
244
+ with gr.Column(scale=2):
245
+ explorer_plot = gr.Plot(label="Gaze Bias (Image A vs. B)")
246
 
247
+ # --- WIRING FOR ALL TABS ---
248
+ outputs_rq2 = [rq2_summary_output, rq2_table_output, rq2_plot_output]
249
+ outputs_explorer = [explorer_summary, explorer_plot, explorer_report_card]
250
+
251
+ # Wiring for Tab 1
252
  rq1_metric_dropdown.change(fn=update_rq1_visuals, inputs=[rq1_metric_dropdown], outputs=[rq1_plot_output, rq1_summary_output])
253
+
254
+ # Wiring for Tab 2
255
  rq2_test_size_slider.release(fn=update_rq2_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq2)
256
  rq2_estimators_slider.release(fn=update_rq2_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq2)
257
 
258
+ # Wiring for Tab 3
259
+ explorer_participant.change(fn=update_explorer_view, inputs=[explorer_participant, explorer_question], outputs=outputs_explorer)
260
+ explorer_question.change(fn=update_explorer_view, inputs=[explorer_participant, explorer_question], outputs=outputs_explorer)
261
+
262
+ # Load initial state for all tabs when the app starts
263
  demo.load(fn=update_rq1_visuals, inputs=[rq1_metric_dropdown], outputs=[rq1_plot_output, rq1_summary_output])
264
  demo.load(fn=update_rq2_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=outputs_rq2)
 
265
 
266
  if __name__ == "__main__":
267
  demo.launch()