clockclock commited on
Commit
e3afe9e
·
verified ·
1 Parent(s): 5b44616

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -122
app.py CHANGED
@@ -1,4 +1,4 @@
1
- # app.py
2
  import pandas as pd
3
  import numpy as np
4
  import matplotlib.pyplot as plt
@@ -16,13 +16,12 @@ import os
16
  import git
17
 
18
  # --- Main Class (Slightly Refactored for Interactivity) ---
19
- # The core logic remains, but we separate data loading from analysis functions.
20
  warnings.filterwarnings('ignore')
21
  plt.style.use('default')
22
  sns.set_palette("husl")
23
 
24
-
25
  class EnhancedAIvsRealGazeAnalyzer:
 
26
  def __init__(self):
27
  self.questions = ['Q1', 'Q2', 'Q3', 'Q4', 'Q5', 'Q6']
28
  self.correct_answers = {'Pair1': 'B', 'Pair2': 'B', 'Pair3': 'B', 'Pair4': 'B', 'Pair5': 'B', 'Pair6': 'B'}
@@ -32,192 +31,128 @@ class EnhancedAIvsRealGazeAnalyzer:
32
  self.time_metrics = []
33
 
34
  def load_and_process_data(self, base_path, response_file):
35
- """Loads all data and preprocesses it once."""
36
  print("Loading and processing data...")
37
- # Load response data
38
- self.response_data = pd.read_excel(response_file) if response_file.endswith('.xlsx') else pd.read_csv(
39
- response_file)
40
  self.response_data.columns = self.response_data.columns.str.strip()
41
  for pair, correct_answer in self.correct_answers.items():
42
  if pair in self.response_data.columns:
43
- self.response_data[f'{pair}_Correct'] = (
44
- self.response_data[pair].astype(str).str.strip().str.upper() == correct_answer)
45
-
46
- # Load eye-tracking data
47
  all_data = {}
48
  for question in self.questions:
49
  file_path = f"{base_path}/Filtered_GenAI_Metrics_cleaned_{question}.xlsx"
50
  if os.path.exists(file_path):
51
  xls = pd.ExcelFile(file_path)
52
  all_data[question] = {sheet_name: pd.read_excel(xls, sheet_name) for sheet_name in xls.sheet_names}
53
-
54
- # Combine and merge
55
  all_dfs = [df.copy().assign(Question=q, Metric_Type=m) for q, qd in all_data.items() for m, df in qd.items()]
56
- if not all_dfs:
57
- raise ValueError("No eye-tracking data files were found or loaded.")
58
-
59
  self.combined_data = pd.concat(all_dfs, ignore_index=True)
60
  self.combined_data.columns = self.combined_data.columns.str.strip()
61
-
62
- # Merge with responses
63
  et_id_col = next((c for c in self.combined_data.columns if 'participant' in c.lower()), None)
64
  resp_id_col = next((c for c in self.response_data.columns if 'participant' in c.lower()), None)
65
-
66
- response_long = self.response_data.melt(id_vars=[resp_id_col], value_vars=self.correct_answers.keys(),
67
- var_name='Pair', value_name='Response')
68
- correctness_long = self.response_data.melt(id_vars=[resp_id_col],
69
- value_vars=[f'{p}_Correct' for p in self.correct_answers.keys()],
70
- var_name='Pair_Correct_Col', value_name='Correct')
71
  correctness_long['Pair'] = correctness_long['Pair_Correct_Col'].str.replace('_Correct', '')
72
- response_long = response_long.merge(correctness_long[[resp_id_col, 'Pair', 'Correct']],
73
- on=[resp_id_col, 'Pair'])
74
-
75
- q_to_pair = {f'Q{i + 1}': f'Pair{i + 1}' for i in range(6)}
76
  self.combined_data['Pair'] = self.combined_data['Question'].map(q_to_pair)
77
- self.combined_data = self.combined_data.merge(response_long, left_on=[et_id_col, 'Pair'],
78
- right_on=[resp_id_col, 'Pair'], how='left')
79
- self.combined_data['Answer_Correctness'] = self.combined_data['Correct'].map(
80
- {True: 'Correct', False: 'Incorrect'})
81
-
82
- # Identify numeric and time columns for later use
83
  self.numeric_cols = self.combined_data.select_dtypes(include=np.number).columns.tolist()
84
- self.time_metrics = [c for c in self.numeric_cols if
85
- any(k in c.lower() for k in ['time', 'duration', 'fixation'])]
86
  print("Data loading complete.")
87
- return self # Return self for chaining
88
 
89
  def analyze_rq1_metric(self, metric):
90
- """Analyzes a single metric for RQ1."""
91
- if metric not in self.combined_data.columns:
92
- return None, "Metric not found."
93
-
94
  correct = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Correct', metric].dropna()
95
  incorrect = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Incorrect', metric].dropna()
96
-
97
- # Perform t-test
98
  t_stat, p_val = stats.ttest_ind(incorrect, correct, equal_var=False, nan_policy='omit')
99
-
100
- # Create plot
101
  fig, ax = plt.subplots(figsize=(8, 6))
102
- sns.boxplot(data=self.combined_data, x='Answer_Correctness', y=metric, ax=ax, palette=['#66b3ff', '#ff9999'])
103
  ax.set_title(f'Comparison of "{metric}" by Answer Correctness', fontsize=14)
104
  ax.set_xlabel("Answer Correctness")
105
  ax.set_ylabel(metric)
106
  plt.tight_layout()
107
-
108
- # Create summary text
109
- summary = f"""
110
- ### Analysis for: **{metric}**
111
- - **Mean (Correct Answers):** {correct.mean():.4f}
112
- - **Mean (Incorrect Answers):** {incorrect.mean():.4f}
113
- - **T-test p-value:** {p_val:.4f}
114
-
115
- **Conclusion:**
116
- - {'There is a **statistically significant** difference between the groups (p < 0.05).' if p_val < 0.05 else 'There is **no statistically significant** difference between the groups (p >= 0.05).'}
117
- """
118
  return fig, summary
119
 
120
  def run_prediction_model(self, test_size, n_estimators):
121
  """Runs the RandomForest model with given parameters for RQ2."""
122
  leaky_features = ['Total_Correct', 'Overall_Accuracy', 'Correct']
123
  features_to_use = [col for col in self.numeric_cols if col not in leaky_features]
124
-
125
  features = self.combined_data[features_to_use].copy()
126
  target = self.combined_data['Answer_Correctness'].map({'Correct': 1, 'Incorrect': 0})
127
-
128
  valid_indices = target.notna()
129
  features, target = features[valid_indices], target[valid_indices]
130
  features = features.fillna(features.median()).fillna(0)
131
-
132
- if len(target.unique()) < 2:
133
- return "Not enough classes to train the model.", None
134
-
135
- X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=test_size, random_state=42,
136
- stratify=target)
137
  scaler = StandardScaler()
138
  X_train_scaled, X_test_scaled = scaler.fit_transform(X_train), scaler.transform(X_test)
139
-
140
  model = RandomForestClassifier(n_estimators=n_estimators, random_state=42, class_weight='balanced')
141
  model.fit(X_train_scaled, y_train)
142
  y_pred_proba = model.predict_proba(X_test_scaled)[:, 1]
143
  y_pred = model.predict(X_test_scaled)
144
-
145
- # Generate results
146
  report = classification_report(y_test, y_pred, target_names=['Incorrect', 'Correct'], output_dict=True)
147
  auc_score = roc_auc_score(y_test, y_pred_proba)
148
-
 
149
  report_df = pd.DataFrame(report).transpose().round(3)
 
 
150
  report_md = f"""
151
  ### Model Performance
152
  - **AUC Score:** **{auc_score:.4f}**
153
  - **Overall Accuracy:** {report['accuracy']:.3f}
154
-
155
  **Classification Report:**
156
- {report_df.to_markdown()}
157
  """
158
 
159
- # Feature importance plot
160
  feature_importance = pd.DataFrame({'Feature': features.columns, 'Importance': model.feature_importances_})
161
  feature_importance = feature_importance.sort_values('Importance', ascending=False).head(15)
162
-
163
  fig, ax = plt.subplots(figsize=(10, 8))
164
  sns.barplot(data=feature_importance, x='Importance', y='Feature', ax=ax, palette='viridis')
165
  ax.set_title(f'Top 15 Predictive Features (n_estimators={n_estimators})', fontsize=14)
166
  plt.tight_layout()
167
-
168
  return report_md, fig
169
 
170
-
171
  # --- DATA SETUP (RUNS ONCE AT STARTUP) ---
172
  def setup_and_load_data():
173
- """Clones the repo if not present and loads data."""
174
  repo_url = "https://github.com/RextonRZ/GenAIEyeTrackingCleanedDataset"
175
  repo_dir = "GenAIEyeTrackingCleanedDataset"
176
-
177
  if not os.path.exists(repo_dir):
178
  print(f"Cloning data repository from {repo_url}...")
179
  git.Repo.clone_from(repo_url, repo_dir)
180
  else:
181
  print("Data repository already exists.")
182
-
183
- # --- THIS IS THE CORRECTED PART ---
184
- # The data files are in the main repo directory, not a subfolder
185
  base_path = repo_dir
186
- # The response file is also in the main directory and has a different name
187
  response_file = os.path.join(repo_dir, "GenAI Response.xlsx")
188
- # --- END OF CORRECTION ---
189
-
190
  analyzer = EnhancedAIvsRealGazeAnalyzer().load_and_process_data(base_path, response_file)
191
  return analyzer
192
 
193
-
194
  print("Starting application setup...")
195
  analyzer = setup_and_load_data()
196
  print("Application setup complete. Ready for interaction.")
197
 
198
-
199
  # --- GRADIO INTERACTIVE FUNCTIONS ---
200
  def update_rq1_visuals(metric_choice):
201
- """Called by Gradio when the dropdown for RQ1 changes."""
202
- if not metric_choice:
203
- return None, "Please select a metric from the dropdown."
204
  plot, summary = analyzer.analyze_rq1_metric(metric_choice)
205
  return plot, summary
206
 
207
-
208
  def update_rq2_model(test_size, n_estimators):
209
- """Called by Gradio when sliders for RQ2 change."""
210
- n_estimators = int(n_estimators) # Ensure it's an integer
211
  report, plot = analyzer.run_prediction_model(test_size, n_estimators)
212
  return report, plot
213
 
214
-
215
  # --- GRADIO INTERFACE DEFINITION ---
216
  description = """
217
  # Interactive Dashboard: AI vs. Real Gaze Analysis
218
  Explore the eye-tracking dataset by interacting with the controls below. The data is automatically loaded from the public GitHub repository.
219
  """
220
 
 
221
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
222
  gr.Markdown(description)
223
 
@@ -234,10 +169,11 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
234
  rq1_summary_output = gr.Markdown(label="Statistical Summary")
235
  with gr.Column(scale=2):
236
  rq1_plot_output = gr.Plot(label="Metric Comparison")
237
-
238
  with gr.TabItem("RQ2: Predicting Correctness from Gaze"):
239
  gr.Markdown("### Can we build a model to predict answer correctness from gaze patterns?")
240
  with gr.Row():
 
241
  with gr.Column(scale=1):
242
  gr.Markdown("#### Tune Model Hyperparameters")
243
  rq2_test_size_slider = gr.Slider(
@@ -246,40 +182,19 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
246
  rq2_estimators_slider = gr.Slider(
247
  minimum=10, maximum=200, step=10, value=100, label="Number of Trees (n_estimators)"
248
  )
249
- rq2_report_output = gr.Markdown(label="Model Performance Report")
250
  with gr.Column(scale=2):
 
251
  rq2_plot_output = gr.Plot(label="Feature Importance")
252
 
253
  # Wire up the interactive components
254
- rq1_metric_dropdown.change(
255
- fn=update_rq1_visuals,
256
- inputs=[rq1_metric_dropdown],
257
- outputs=[rq1_plot_output, rq1_summary_output]
258
- )
259
-
260
- # Use .release to only update when the user lets go of the slider
261
- rq2_test_size_slider.release(
262
- fn=update_rq2_model,
263
- inputs=[rq2_test_size_slider, rq2_estimators_slider],
264
- outputs=[rq2_report_output, rq2_plot_output]
265
- )
266
- rq2_estimators_slider.release(
267
- fn=update_rq2_model,
268
- inputs=[rq2_test_size_slider, rq2_estimators_slider],
269
- outputs=[rq2_report_output, rq2_plot_output]
270
- )
271
-
272
  # Load initial state
273
- demo.load(
274
- fn=update_rq1_visuals,
275
- inputs=[rq1_metric_dropdown],
276
- outputs=[rq1_plot_output, rq1_summary_output]
277
- )
278
- demo.load(
279
- fn=update_rq2_model,
280
- inputs=[rq2_test_size_slider, rq2_estimators_slider],
281
- outputs=[rq2_report_output, rq2_plot_output]
282
- )
283
 
284
  if __name__ == "__main__":
285
  demo.launch()
 
1
+ # app.py (Corrected Version)
2
  import pandas as pd
3
  import numpy as np
4
  import matplotlib.pyplot as plt
 
16
  import git
17
 
18
  # --- Main Class (Slightly Refactored for Interactivity) ---
 
19
  warnings.filterwarnings('ignore')
20
  plt.style.use('default')
21
  sns.set_palette("husl")
22
 
 
23
  class EnhancedAIvsRealGazeAnalyzer:
24
+ # ... (The entire class from before remains unchanged up to run_prediction_model) ...
25
  def __init__(self):
26
  self.questions = ['Q1', 'Q2', 'Q3', 'Q4', 'Q5', 'Q6']
27
  self.correct_answers = {'Pair1': 'B', 'Pair2': 'B', 'Pair3': 'B', 'Pair4': 'B', 'Pair5': 'B', 'Pair6': 'B'}
 
31
  self.time_metrics = []
32
 
33
  def load_and_process_data(self, base_path, response_file):
 
34
  print("Loading and processing data...")
35
+ self.response_data = pd.read_excel(response_file) if response_file.endswith('.xlsx') else pd.read_csv(response_file)
 
 
36
  self.response_data.columns = self.response_data.columns.str.strip()
37
  for pair, correct_answer in self.correct_answers.items():
38
  if pair in self.response_data.columns:
39
+ self.response_data[f'{pair}_Correct'] = (self.response_data[pair].astype(str).str.strip().str.upper() == correct_answer)
 
 
 
40
  all_data = {}
41
  for question in self.questions:
42
  file_path = f"{base_path}/Filtered_GenAI_Metrics_cleaned_{question}.xlsx"
43
  if os.path.exists(file_path):
44
  xls = pd.ExcelFile(file_path)
45
  all_data[question] = {sheet_name: pd.read_excel(xls, sheet_name) for sheet_name in xls.sheet_names}
 
 
46
  all_dfs = [df.copy().assign(Question=q, Metric_Type=m) for q, qd in all_data.items() for m, df in qd.items()]
47
+ if not all_dfs: raise ValueError("No eye-tracking data files were found or loaded.")
 
 
48
  self.combined_data = pd.concat(all_dfs, ignore_index=True)
49
  self.combined_data.columns = self.combined_data.columns.str.strip()
 
 
50
  et_id_col = next((c for c in self.combined_data.columns if 'participant' in c.lower()), None)
51
  resp_id_col = next((c for c in self.response_data.columns if 'participant' in c.lower()), None)
52
+ response_long = self.response_data.melt(id_vars=[resp_id_col], value_vars=self.correct_answers.keys(), var_name='Pair', value_name='Response')
53
+ correctness_long = self.response_data.melt(id_vars=[resp_id_col], value_vars=[f'{p}_Correct' for p in self.correct_answers.keys()], var_name='Pair_Correct_Col', value_name='Correct')
 
 
 
 
54
  correctness_long['Pair'] = correctness_long['Pair_Correct_Col'].str.replace('_Correct', '')
55
+ response_long = response_long.merge(correctness_long[[resp_id_col, 'Pair', 'Correct']], on=[resp_id_col, 'Pair'])
56
+ q_to_pair = {f'Q{i+1}': f'Pair{i+1}' for i in range(6)}
 
 
57
  self.combined_data['Pair'] = self.combined_data['Question'].map(q_to_pair)
58
+ self.combined_data = self.combined_data.merge(response_long, left_on=[et_id_col, 'Pair'], right_on=[resp_id_col, 'Pair'], how='left')
59
+ self.combined_data['Answer_Correctness'] = self.combined_data['Correct'].map({True: 'Correct', False: 'Incorrect'})
 
 
 
 
60
  self.numeric_cols = self.combined_data.select_dtypes(include=np.number).columns.tolist()
61
+ self.time_metrics = [c for c in self.numeric_cols if any(k in c.lower() for k in ['time', 'duration', 'fixation'])]
 
62
  print("Data loading complete.")
63
+ return self
64
 
65
  def analyze_rq1_metric(self, metric):
66
+ if metric not in self.combined_data.columns: return None, "Metric not found."
 
 
 
67
  correct = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Correct', metric].dropna()
68
  incorrect = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Incorrect', metric].dropna()
 
 
69
  t_stat, p_val = stats.ttest_ind(incorrect, correct, equal_var=False, nan_policy='omit')
 
 
70
  fig, ax = plt.subplots(figsize=(8, 6))
71
+ sns.boxplot(data=self.combined_data, x='Answer_Correctness', y=metric, ax=ax, palette=['#66b3ff','#ff9999'])
72
  ax.set_title(f'Comparison of "{metric}" by Answer Correctness', fontsize=14)
73
  ax.set_xlabel("Answer Correctness")
74
  ax.set_ylabel(metric)
75
  plt.tight_layout()
76
+ summary = f"""### Analysis for: **{metric}**\n- **Mean (Correct Answers):** {correct.mean():.4f}\n- **Mean (Incorrect Answers):** {incorrect.mean():.4f}\n- **T-test p-value:** {p_val:.4f}\n\n**Conclusion:**\n- {'There is a **statistically significant** difference between the groups (p < 0.05).' if p_val < 0.05 else 'There is **no statistically significant** difference between the groups (p >= 0.05).'}"""
 
 
 
 
 
 
 
 
 
 
77
  return fig, summary
78
 
79
  def run_prediction_model(self, test_size, n_estimators):
80
  """Runs the RandomForest model with given parameters for RQ2."""
81
  leaky_features = ['Total_Correct', 'Overall_Accuracy', 'Correct']
82
  features_to_use = [col for col in self.numeric_cols if col not in leaky_features]
 
83
  features = self.combined_data[features_to_use].copy()
84
  target = self.combined_data['Answer_Correctness'].map({'Correct': 1, 'Incorrect': 0})
 
85
  valid_indices = target.notna()
86
  features, target = features[valid_indices], target[valid_indices]
87
  features = features.fillna(features.median()).fillna(0)
88
+ if len(target.unique()) < 2: return "Not enough classes to train the model.", None
89
+ X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=test_size, random_state=42, stratify=target)
 
 
 
 
90
  scaler = StandardScaler()
91
  X_train_scaled, X_test_scaled = scaler.fit_transform(X_train), scaler.transform(X_test)
 
92
  model = RandomForestClassifier(n_estimators=n_estimators, random_state=42, class_weight='balanced')
93
  model.fit(X_train_scaled, y_train)
94
  y_pred_proba = model.predict_proba(X_test_scaled)[:, 1]
95
  y_pred = model.predict(X_test_scaled)
 
 
96
  report = classification_report(y_test, y_pred, target_names=['Incorrect', 'Correct'], output_dict=True)
97
  auc_score = roc_auc_score(y_test, y_pred_proba)
98
+
99
+ # --- CHANGE 1: Use tabulate to create a clean markdown table ---
100
  report_df = pd.DataFrame(report).transpose().round(3)
101
+ report_table = tabulate(report_df, headers='keys', tablefmt='pipe')
102
+
103
  report_md = f"""
104
  ### Model Performance
105
  - **AUC Score:** **{auc_score:.4f}**
106
  - **Overall Accuracy:** {report['accuracy']:.3f}
107
+
108
  **Classification Report:**
109
+ {report_table}
110
  """
111
 
 
112
  feature_importance = pd.DataFrame({'Feature': features.columns, 'Importance': model.feature_importances_})
113
  feature_importance = feature_importance.sort_values('Importance', ascending=False).head(15)
 
114
  fig, ax = plt.subplots(figsize=(10, 8))
115
  sns.barplot(data=feature_importance, x='Importance', y='Feature', ax=ax, palette='viridis')
116
  ax.set_title(f'Top 15 Predictive Features (n_estimators={n_estimators})', fontsize=14)
117
  plt.tight_layout()
 
118
  return report_md, fig
119
 
 
120
  # --- DATA SETUP (RUNS ONCE AT STARTUP) ---
121
  def setup_and_load_data():
 
122
  repo_url = "https://github.com/RextonRZ/GenAIEyeTrackingCleanedDataset"
123
  repo_dir = "GenAIEyeTrackingCleanedDataset"
 
124
  if not os.path.exists(repo_dir):
125
  print(f"Cloning data repository from {repo_url}...")
126
  git.Repo.clone_from(repo_url, repo_dir)
127
  else:
128
  print("Data repository already exists.")
 
 
 
129
  base_path = repo_dir
 
130
  response_file = os.path.join(repo_dir, "GenAI Response.xlsx")
 
 
131
  analyzer = EnhancedAIvsRealGazeAnalyzer().load_and_process_data(base_path, response_file)
132
  return analyzer
133
 
 
134
  print("Starting application setup...")
135
  analyzer = setup_and_load_data()
136
  print("Application setup complete. Ready for interaction.")
137
 
 
138
  # --- GRADIO INTERACTIVE FUNCTIONS ---
139
  def update_rq1_visuals(metric_choice):
140
+ if not metric_choice: return None, "Please select a metric from the dropdown."
 
 
141
  plot, summary = analyzer.analyze_rq1_metric(metric_choice)
142
  return plot, summary
143
 
 
144
  def update_rq2_model(test_size, n_estimators):
145
+ n_estimators = int(n_estimators)
 
146
  report, plot = analyzer.run_prediction_model(test_size, n_estimators)
147
  return report, plot
148
 
 
149
  # --- GRADIO INTERFACE DEFINITION ---
150
  description = """
151
  # Interactive Dashboard: AI vs. Real Gaze Analysis
152
  Explore the eye-tracking dataset by interacting with the controls below. The data is automatically loaded from the public GitHub repository.
153
  """
154
 
155
+ # --- CHANGE 2: Restructure the layout with columns ---
156
  with gr.Blocks(theme=gr.themes.Soft()) as demo:
157
  gr.Markdown(description)
158
 
 
169
  rq1_summary_output = gr.Markdown(label="Statistical Summary")
170
  with gr.Column(scale=2):
171
  rq1_plot_output = gr.Plot(label="Metric Comparison")
172
+
173
  with gr.TabItem("RQ2: Predicting Correctness from Gaze"):
174
  gr.Markdown("### Can we build a model to predict answer correctness from gaze patterns?")
175
  with gr.Row():
176
+ # --- LEFT COLUMN FOR CONTROLS ---
177
  with gr.Column(scale=1):
178
  gr.Markdown("#### Tune Model Hyperparameters")
179
  rq2_test_size_slider = gr.Slider(
 
182
  rq2_estimators_slider = gr.Slider(
183
  minimum=10, maximum=200, step=10, value=100, label="Number of Trees (n_estimators)"
184
  )
185
+ # --- RIGHT COLUMN FOR OUTPUTS ---
186
  with gr.Column(scale=2):
187
+ rq2_report_output = gr.Markdown(label="Model Performance Report") # Use gr.Markdown
188
  rq2_plot_output = gr.Plot(label="Feature Importance")
189
 
190
  # Wire up the interactive components
191
+ rq1_metric_dropdown.change(fn=update_rq1_visuals, inputs=[rq1_metric_dropdown], outputs=[rq1_plot_output, rq1_summary_output])
192
+ rq2_test_size_slider.release(fn=update_rq2_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=[rq2_report_output, rq2_plot_output])
193
+ rq2_estimators_slider.release(fn=update_rq2_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=[rq2_report_output, rq2_plot_output])
194
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195
  # Load initial state
196
+ demo.load(fn=update_rq1_visuals, inputs=[rq1_metric_dropdown], outputs=[rq1_plot_output, rq1_summary_output])
197
+ demo.load(fn=update_rq2_model, inputs=[rq2_test_size_slider, rq2_estimators_slider], outputs=[rq2_report_output, rq2_plot_output])
 
 
 
 
 
 
 
 
198
 
199
  if __name__ == "__main__":
200
  demo.launch()