clockclock commited on
Commit
e98015f
·
verified ·
1 Parent(s): 4123c0e

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +281 -0
  2. requirements.txt +9 -0
app.py ADDED
@@ -0,0 +1,281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # app.py
2
+ import pandas as pd
3
+ import numpy as np
4
+ import matplotlib.pyplot as plt
5
+ import seaborn as sns
6
+ from scipy import stats
7
+ from sklearn.preprocessing import StandardScaler
8
+ from sklearn.ensemble import RandomForestClassifier
9
+ from sklearn.model_selection import train_test_split
10
+ from sklearn.metrics import classification_report, roc_auc_score
11
+ from tabulate import tabulate
12
+ import warnings
13
+ import traceback
14
+ import gradio as gr
15
+ import os
16
+ import git
17
+
18
+ # --- Main Class (Slightly Refactored for Interactivity) ---
19
+ # The core logic remains, but we separate data loading from analysis functions.
20
+ warnings.filterwarnings('ignore')
21
+ plt.style.use('default')
22
+ sns.set_palette("husl")
23
+
24
+
25
+ class EnhancedAIvsRealGazeAnalyzer:
26
+ def __init__(self):
27
+ self.questions = ['Q1', 'Q2', 'Q3', 'Q4', 'Q5', 'Q6']
28
+ self.correct_answers = {'Pair1': 'B', 'Pair2': 'B', 'Pair3': 'B', 'Pair4': 'B', 'Pair5': 'B', 'Pair6': 'B'}
29
+ self.combined_data = None
30
+ self.response_data = None
31
+ self.numeric_cols = []
32
+ self.time_metrics = []
33
+
34
+ def load_and_process_data(self, base_path, response_file):
35
+ """Loads all data and preprocesses it once."""
36
+ print("Loading and processing data...")
37
+ # Load response data
38
+ self.response_data = pd.read_excel(response_file) if response_file.endswith('.xlsx') else pd.read_csv(
39
+ response_file)
40
+ self.response_data.columns = self.response_data.columns.str.strip()
41
+ for pair, correct_answer in self.correct_answers.items():
42
+ if pair in self.response_data.columns:
43
+ self.response_data[f'{pair}_Correct'] = (
44
+ self.response_data[pair].astype(str).str.strip().str.upper() == correct_answer)
45
+
46
+ # Load eye-tracking data
47
+ all_data = {}
48
+ for question in self.questions:
49
+ file_path = f"{base_path}/Filtered_GenAI_Metrics_cleaned_{question}.xlsx"
50
+ if os.path.exists(file_path):
51
+ xls = pd.ExcelFile(file_path)
52
+ all_data[question] = {sheet_name: pd.read_excel(xls, sheet_name) for sheet_name in xls.sheet_names}
53
+
54
+ # Combine and merge
55
+ all_dfs = [df.copy().assign(Question=q, Metric_Type=m) for q, qd in all_data.items() for m, df in qd.items()]
56
+ if not all_dfs:
57
+ raise ValueError("No eye-tracking data files were found or loaded.")
58
+
59
+ self.combined_data = pd.concat(all_dfs, ignore_index=True)
60
+ self.combined_data.columns = self.combined_data.columns.str.strip()
61
+
62
+ # Merge with responses
63
+ et_id_col = next((c for c in self.combined_data.columns if 'participant' in c.lower()), None)
64
+ resp_id_col = next((c for c in self.response_data.columns if 'participant' in c.lower()), None)
65
+
66
+ response_long = self.response_data.melt(id_vars=[resp_id_col], value_vars=self.correct_answers.keys(),
67
+ var_name='Pair', value_name='Response')
68
+ correctness_long = self.response_data.melt(id_vars=[resp_id_col],
69
+ value_vars=[f'{p}_Correct' for p in self.correct_answers.keys()],
70
+ var_name='Pair_Correct_Col', value_name='Correct')
71
+ correctness_long['Pair'] = correctness_long['Pair_Correct_Col'].str.replace('_Correct', '')
72
+ response_long = response_long.merge(correctness_long[[resp_id_col, 'Pair', 'Correct']],
73
+ on=[resp_id_col, 'Pair'])
74
+
75
+ q_to_pair = {f'Q{i + 1}': f'Pair{i + 1}' for i in range(6)}
76
+ self.combined_data['Pair'] = self.combined_data['Question'].map(q_to_pair)
77
+ self.combined_data = self.combined_data.merge(response_long, left_on=[et_id_col, 'Pair'],
78
+ right_on=[resp_id_col, 'Pair'], how='left')
79
+ self.combined_data['Answer_Correctness'] = self.combined_data['Correct'].map(
80
+ {True: 'Correct', False: 'Incorrect'})
81
+
82
+ # Identify numeric and time columns for later use
83
+ self.numeric_cols = self.combined_data.select_dtypes(include=np.number).columns.tolist()
84
+ self.time_metrics = [c for c in self.numeric_cols if
85
+ any(k in c.lower() for k in ['time', 'duration', 'fixation'])]
86
+ print("Data loading complete.")
87
+ return self # Return self for chaining
88
+
89
+ def analyze_rq1_metric(self, metric):
90
+ """Analyzes a single metric for RQ1."""
91
+ if metric not in self.combined_data.columns:
92
+ return None, "Metric not found."
93
+
94
+ correct = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Correct', metric].dropna()
95
+ incorrect = self.combined_data.loc[self.combined_data['Answer_Correctness'] == 'Incorrect', metric].dropna()
96
+
97
+ # Perform t-test
98
+ t_stat, p_val = stats.ttest_ind(incorrect, correct, equal_var=False, nan_policy='omit')
99
+
100
+ # Create plot
101
+ fig, ax = plt.subplots(figsize=(8, 6))
102
+ sns.boxplot(data=self.combined_data, x='Answer_Correctness', y=metric, ax=ax, palette=['#66b3ff', '#ff9999'])
103
+ ax.set_title(f'Comparison of "{metric}" by Answer Correctness', fontsize=14)
104
+ ax.set_xlabel("Answer Correctness")
105
+ ax.set_ylabel(metric)
106
+ plt.tight_layout()
107
+
108
+ # Create summary text
109
+ summary = f"""
110
+ ### Analysis for: **{metric}**
111
+ - **Mean (Correct Answers):** {correct.mean():.4f}
112
+ - **Mean (Incorrect Answers):** {incorrect.mean():.4f}
113
+ - **T-test p-value:** {p_val:.4f}
114
+
115
+ **Conclusion:**
116
+ - {'There is a **statistically significant** difference between the groups (p < 0.05).' if p_val < 0.05 else 'There is **no statistically significant** difference between the groups (p >= 0.05).'}
117
+ """
118
+ return fig, summary
119
+
120
+ def run_prediction_model(self, test_size, n_estimators):
121
+ """Runs the RandomForest model with given parameters for RQ2."""
122
+ leaky_features = ['Total_Correct', 'Overall_Accuracy', 'Correct']
123
+ features_to_use = [col for col in self.numeric_cols if col not in leaky_features]
124
+
125
+ features = self.combined_data[features_to_use].copy()
126
+ target = self.combined_data['Answer_Correctness'].map({'Correct': 1, 'Incorrect': 0})
127
+
128
+ valid_indices = target.notna()
129
+ features, target = features[valid_indices], target[valid_indices]
130
+ features = features.fillna(features.median()).fillna(0)
131
+
132
+ if len(target.unique()) < 2:
133
+ return "Not enough classes to train the model.", None
134
+
135
+ X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=test_size, random_state=42,
136
+ stratify=target)
137
+ scaler = StandardScaler()
138
+ X_train_scaled, X_test_scaled = scaler.fit_transform(X_train), scaler.transform(X_test)
139
+
140
+ model = RandomForestClassifier(n_estimators=n_estimators, random_state=42, class_weight='balanced')
141
+ model.fit(X_train_scaled, y_train)
142
+ y_pred_proba = model.predict_proba(X_test_scaled)[:, 1]
143
+ y_pred = model.predict(X_test_scaled)
144
+
145
+ # Generate results
146
+ report = classification_report(y_test, y_pred, target_names=['Incorrect', 'Correct'], output_dict=True)
147
+ auc_score = roc_auc_score(y_test, y_pred_proba)
148
+
149
+ report_df = pd.DataFrame(report).transpose().round(3)
150
+ report_md = f"""
151
+ ### Model Performance
152
+ - **AUC Score:** **{auc_score:.4f}**
153
+ - **Overall Accuracy:** {report['accuracy']:.3f}
154
+
155
+ **Classification Report:**
156
+ {report_df.to_markdown()}
157
+ """
158
+
159
+ # Feature importance plot
160
+ feature_importance = pd.DataFrame({'Feature': features.columns, 'Importance': model.feature_importances_})
161
+ feature_importance = feature_importance.sort_values('Importance', ascending=False).head(15)
162
+
163
+ fig, ax = plt.subplots(figsize=(10, 8))
164
+ sns.barplot(data=feature_importance, x='Importance', y='Feature', ax=ax, palette='viridis')
165
+ ax.set_title(f'Top 15 Predictive Features (n_estimators={n_estimators})', fontsize=14)
166
+ plt.tight_layout()
167
+
168
+ return report_md, fig
169
+
170
+
171
+ # --- DATA SETUP (RUNS ONCE AT STARTUP) ---
172
+ def setup_and_load_data():
173
+ """Clones the repo if not present and loads data."""
174
+ repo_url = "https://github.com/RextonRZ/GenAIEyeTrackingCleanedDataset"
175
+ repo_dir = "GenAIEyeTrackingCleanedDataset"
176
+
177
+ if not os.path.exists(repo_dir):
178
+ print(f"Cloning data repository from {repo_url}...")
179
+ git.Repo.clone_from(repo_url, repo_dir)
180
+ else:
181
+ print("Data repository already exists.")
182
+
183
+ base_path = os.path.join(repo_dir, "cleaned_dataset")
184
+ response_file = os.path.join(repo_dir, "response_sheet", "GenAI_Response_Sheet.xlsx")
185
+
186
+ analyzer = EnhancedAIvsRealGazeAnalyzer().load_and_process_data(base_path, response_file)
187
+ return analyzer
188
+
189
+
190
+ print("Starting application setup...")
191
+ analyzer = setup_and_load_data()
192
+ print("Application setup complete. Ready for interaction.")
193
+
194
+
195
+ # --- GRADIO INTERACTIVE FUNCTIONS ---
196
+ def update_rq1_visuals(metric_choice):
197
+ """Called by Gradio when the dropdown for RQ1 changes."""
198
+ if not metric_choice:
199
+ return None, "Please select a metric from the dropdown."
200
+ plot, summary = analyzer.analyze_rq1_metric(metric_choice)
201
+ return plot, summary
202
+
203
+
204
+ def update_rq2_model(test_size, n_estimators):
205
+ """Called by Gradio when sliders for RQ2 change."""
206
+ n_estimators = int(n_estimators) # Ensure it's an integer
207
+ report, plot = analyzer.run_prediction_model(test_size, n_estimators)
208
+ return report, plot
209
+
210
+
211
+ # --- GRADIO INTERFACE DEFINITION ---
212
+ description = """
213
+ # Interactive Dashboard: AI vs. Real Gaze Analysis
214
+ Explore the eye-tracking dataset by interacting with the controls below. The data is automatically loaded from the public GitHub repository.
215
+ """
216
+
217
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
218
+ gr.Markdown(description)
219
+
220
+ with gr.Tabs():
221
+ with gr.TabItem("RQ1: Viewing Time vs. Correctness"):
222
+ gr.Markdown("### Does viewing time differ based on whether a participant's answer was correct?")
223
+ with gr.Row():
224
+ with gr.Column(scale=1):
225
+ rq1_metric_dropdown = gr.Dropdown(
226
+ choices=analyzer.time_metrics,
227
+ label="Select a Time-Based Metric to Analyze",
228
+ value=analyzer.time_metrics[0] if analyzer.time_metrics else None
229
+ )
230
+ rq1_summary_output = gr.Markdown(label="Statistical Summary")
231
+ with gr.Column(scale=2):
232
+ rq1_plot_output = gr.Plot(label="Metric Comparison")
233
+
234
+ with gr.TabItem("RQ2: Predicting Correctness from Gaze"):
235
+ gr.Markdown("### Can we build a model to predict answer correctness from gaze patterns?")
236
+ with gr.Row():
237
+ with gr.Column(scale=1):
238
+ gr.Markdown("#### Tune Model Hyperparameters")
239
+ rq2_test_size_slider = gr.Slider(
240
+ minimum=0.1, maximum=0.5, step=0.05, value=0.3, label="Test Set Size"
241
+ )
242
+ rq2_estimators_slider = gr.Slider(
243
+ minimum=10, maximum=200, step=10, value=100, label="Number of Trees (n_estimators)"
244
+ )
245
+ rq2_report_output = gr.Markdown(label="Model Performance Report")
246
+ with gr.Column(scale=2):
247
+ rq2_plot_output = gr.Plot(label="Feature Importance")
248
+
249
+ # Wire up the interactive components
250
+ rq1_metric_dropdown.change(
251
+ fn=update_rq1_visuals,
252
+ inputs=[rq1_metric_dropdown],
253
+ outputs=[rq1_plot_output, rq1_summary_output]
254
+ )
255
+
256
+ # Use .release to only update when the user lets go of the slider
257
+ rq2_test_size_slider.release(
258
+ fn=update_rq2_model,
259
+ inputs=[rq2_test_size_slider, rq2_estimators_slider],
260
+ outputs=[rq2_report_output, rq2_plot_output]
261
+ )
262
+ rq2_estimators_slider.release(
263
+ fn=update_rq2_model,
264
+ inputs=[rq2_test_size_slider, rq2_estimators_slider],
265
+ outputs=[rq2_report_output, rq2_plot_output]
266
+ )
267
+
268
+ # Load initial state
269
+ demo.load(
270
+ fn=update_rq1_visuals,
271
+ inputs=[rq1_metric_dropdown],
272
+ outputs=[rq1_plot_output, rq1_summary_output]
273
+ )
274
+ demo.load(
275
+ fn=update_rq2_model,
276
+ inputs=[rq2_test_size_slider, rq2_estimators_slider],
277
+ outputs=[rq2_report_output, rq2_plot_output]
278
+ )
279
+
280
+ if __name__ == "__main__":
281
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ pandas
2
+ numpy
3
+ matplotlib
4
+ seaborn
5
+ scipy
6
+ scikit-learn
7
+ gradio
8
+ openpyxl
9
+ GitPython