Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,105 +1,207 @@
|
|
1 |
-
# app.py
|
2 |
-
|
3 |
import gradio as gr
|
4 |
-
import
|
5 |
-
|
6 |
from PIL import Image
|
7 |
-
import
|
8 |
-
|
9 |
-
# --- Model Loading (Final, Most Stable Version) ---
|
10 |
-
print("Loading the definitive model for low-RAM CPU environment...")
|
11 |
-
# We are using the more modern and reliable SD 2.0 Inpainting model.
|
12 |
-
# This model is better packaged and less prone to loading errors.
|
13 |
-
model_id = "stabilityai/stable-diffusion-2-inpainting"
|
14 |
-
|
15 |
-
try:
|
16 |
-
pipe = AutoPipelineForInpainting.from_pretrained(
|
17 |
-
model_id,
|
18 |
-
torch_dtype=torch.float32, # Use float32 for CPU compatibility
|
19 |
-
safety_checker=None # Proactively disable the safety checker to save memory
|
20 |
-
)
|
21 |
-
|
22 |
-
# Enable CPU offloading to prevent memory crashes. This is essential.
|
23 |
-
pipe.enable_model_cpu_offload()
|
24 |
-
|
25 |
-
print("Model loaded successfully. The application is ready.")
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
print(f"Error: {e}")
|
31 |
-
print("This is likely due to the free hardware tier not having enough resources.")
|
32 |
-
print("="*80)
|
33 |
-
raise e
|
34 |
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
mask = image_and_mask["mask"].convert("RGB")
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
negative_prompt = DEFAULT_NEGATIVE_PROMPT
|
54 |
-
print(f"Using custom prompt: '{prompt}'")
|
55 |
-
else:
|
56 |
-
prompt = DEFAULT_PROMPT
|
57 |
-
negative_prompt = DEFAULT_NEGATIVE_PROMPT
|
58 |
-
print(f"User prompt is empty. Using default 'General Fix' prompt.")
|
59 |
|
60 |
-
|
61 |
-
|
|
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
)
|
85 |
|
86 |
with gr.Row():
|
87 |
-
with gr.Column(scale=2):
|
88 |
-
input_image = gr.Image(label="1. Upload & Mask Image", source="upload", tool="brush", type="pil")
|
89 |
-
prompt_textbox = gr.Textbox(label="2. Describe Your Fix (Optional)", placeholder="Leave empty for a general fix")
|
90 |
-
with gr.Accordion("Advanced Settings", open=False):
|
91 |
-
guidance_scale = gr.Slider(minimum=0, maximum=20, value=8.0, label="Guidance Scale")
|
92 |
-
num_steps = gr.Slider(minimum=10, maximum=50, step=1, value=20, label="Inference Steps (Fewer is faster)")
|
93 |
with gr.Column(scale=1):
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
|
99 |
-
fn=
|
100 |
-
inputs=[input_image
|
101 |
-
outputs=output_image
|
102 |
)
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
if __name__ == "__main__":
|
105 |
-
demo.launch()
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
from PIL import Image
|
5 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# Load the Haar Cascade classifier for face detection
|
8 |
+
face_cascade_path = os.path.join(os.path.dirname(__file__), "haarcascade_frontalface_default.xml")
|
9 |
+
face_cascade = cv2.CascadeClassifier(face_cascade_path)
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
def process_image(image, x, y, effect_type):
|
12 |
+
if image is None:
|
13 |
+
return None, "Please upload an image first."
|
14 |
|
15 |
+
img_np = np.array(image)
|
16 |
+
img_np_bgr = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
17 |
+
processed_img_np_bgr = img_np_bgr.copy()
|
18 |
|
19 |
+
gray = cv2.cvtColor(img_np_bgr, cv2.COLOR_BGR2GRAY)
|
20 |
+
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
|
21 |
+
|
22 |
+
target_roi = None
|
23 |
+
target_x, target_y, target_w, target_h = None, None, None, None
|
24 |
+
status_message = ""
|
25 |
+
|
26 |
+
# Find the face closest to the clicked coordinates
|
27 |
+
if x is not None and y is not None:
|
28 |
+
min_distance = float('inf')
|
29 |
+
for (fx, fy, fw, fh) in faces:
|
30 |
+
# Calculate center of the face
|
31 |
+
face_center_x = fx + fw // 2
|
32 |
+
face_center_y = fy + fh // 2
|
33 |
+
distance = np.sqrt((face_center_x - x)**2 + (face_center_y - y)**2)
|
34 |
+
if distance < min_distance and distance < 100: # Only consider faces within 100 pixels
|
35 |
+
min_distance = distance
|
36 |
+
target_x, target_y, target_w, target_h = fx, fy, fw, fh
|
37 |
+
|
38 |
+
if target_x is not None:
|
39 |
+
# Apply effect to the detected face
|
40 |
+
roi = processed_img_np_bgr[target_y:target_y+target_h, target_x:target_x+target_w]
|
41 |
+
status_message = f"Applied {effect_type} effect to detected face."
|
42 |
+
|
43 |
+
if effect_type == "blur":
|
44 |
+
processed_roi = cv2.GaussianBlur(roi, (35, 35), 0)
|
45 |
+
elif effect_type == "sharpen":
|
46 |
+
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
|
47 |
+
processed_roi = cv2.filter2D(roi, -1, kernel)
|
48 |
+
elif effect_type == "grayscale":
|
49 |
+
processed_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
|
50 |
+
processed_roi = cv2.cvtColor(processed_roi, cv2.COLOR_GRAY2BGR)
|
51 |
+
elif effect_type == "pixelate":
|
52 |
+
h, w = roi.shape[:2]
|
53 |
+
temp = cv2.resize(roi, (w//10, h//10), interpolation=cv2.INTER_LINEAR)
|
54 |
+
processed_roi = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)
|
55 |
+
else:
|
56 |
+
processed_roi = roi # No effect
|
57 |
+
|
58 |
+
processed_img_np_bgr[target_y:target_y+target_h, target_x:target_x+target_w] = processed_roi
|
59 |
+
elif x is not None and y is not None: # If no face detected near click, apply to a general region
|
60 |
+
region_size = 100
|
61 |
+
x1 = max(0, x - region_size // 2)
|
62 |
+
y1 = max(0, y - region_size // 2)
|
63 |
+
x2 = min(image.width, x + region_size // 2)
|
64 |
+
y2 = min(image.height, y + region_size // 2)
|
65 |
+
|
66 |
+
roi = processed_img_np_bgr[y1:y2, x1:x2]
|
67 |
+
status_message = f"Applied {effect_type} effect to clicked region."
|
68 |
+
|
69 |
+
if effect_type == "blur":
|
70 |
+
processed_roi = cv2.GaussianBlur(roi, (15, 15), 0)
|
71 |
+
elif effect_type == "sharpen":
|
72 |
+
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
|
73 |
+
processed_roi = cv2.filter2D(roi, -1, kernel)
|
74 |
+
elif effect_type == "grayscale":
|
75 |
+
processed_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
|
76 |
+
processed_roi = cv2.cvtColor(processed_roi, cv2.COLOR_GRAY2BGR)
|
77 |
+
elif effect_type == "pixelate":
|
78 |
+
h, w = roi.shape[:2]
|
79 |
+
temp = cv2.resize(roi, (w//10, h//10), interpolation=cv2.INTER_LINEAR)
|
80 |
+
processed_roi = cv2.resize(temp, (w, h), interpolation=cv2.INTER_NEAREST)
|
81 |
+
else:
|
82 |
+
processed_roi = roi # No effect
|
83 |
+
|
84 |
+
processed_img_np_bgr[y1:y1+roi.shape[0], x1:x1+roi.shape[1]] = processed_roi
|
85 |
+
else:
|
86 |
+
status_message = "Please click on the image to select a region."
|
87 |
+
|
88 |
+
img_pil = Image.fromarray(cv2.cvtColor(processed_img_np_bgr, cv2.COLOR_BGR2RGB))
|
89 |
+
return img_pil, status_message
|
90 |
+
|
91 |
+
def detect_faces_only(image):
|
92 |
+
if image is None:
|
93 |
+
return None, "Please upload an image first."
|
94 |
|
95 |
+
img_np = np.array(image)
|
96 |
+
img_np_bgr = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
|
|
|
97 |
|
98 |
+
gray = cv2.cvtColor(img_np_bgr, cv2.COLOR_BGR2GRAY)
|
99 |
+
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
# Draw rectangles around detected faces
|
102 |
+
for (x, y, w, h) in faces:
|
103 |
+
cv2.rectangle(img_np_bgr, (x, y), (x+w, y+h), (255, 0, 0), 2)
|
104 |
|
105 |
+
img_pil = Image.fromarray(cv2.cvtColor(img_np_bgr, cv2.COLOR_BGR2RGB))
|
106 |
+
return img_pil, f"Detected {len(faces)} face(s)."
|
107 |
+
|
108 |
+
# Custom CSS for better styling
|
109 |
+
css = """
|
110 |
+
.gradio-container {
|
111 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
112 |
+
}
|
113 |
+
.main-header {
|
114 |
+
text-align: center;
|
115 |
+
color: #2c3e50;
|
116 |
+
margin-bottom: 20px;
|
117 |
+
}
|
118 |
+
.instruction-text {
|
119 |
+
background-color: #f8f9fa;
|
120 |
+
padding: 15px;
|
121 |
+
border-radius: 8px;
|
122 |
+
border-left: 4px solid #007bff;
|
123 |
+
margin-bottom: 20px;
|
124 |
+
}
|
125 |
+
"""
|
126 |
+
|
127 |
+
# Gradio interface
|
128 |
+
with gr.Blocks(css=css, title="AI Image Editor") as demo:
|
129 |
+
gr.HTML("<h1 class='main-header'>🎨 AI Image Editor (CPU-friendly)</h1>")
|
130 |
|
131 |
+
gr.HTML("""
|
132 |
+
<div class='instruction-text'>
|
133 |
+
<strong>Instructions:</strong>
|
134 |
+
<ol>
|
135 |
+
<li>Upload an image using the file uploader</li>
|
136 |
+
<li>Click on any part of the image to select a region</li>
|
137 |
+
<li>Choose an effect from the dropdown menu</li>
|
138 |
+
<li>Click "Apply Effect" to process the selected region</li>
|
139 |
+
<li>Use "Detect Faces" to see all detected faces with blue rectangles</li>
|
140 |
+
</ol>
|
141 |
+
<em>Note: The app will prioritize faces near your click location, or apply effects to a general region if no face is detected nearby.</em>
|
142 |
+
</div>
|
143 |
+
""")
|
144 |
|
145 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
with gr.Column(scale=1):
|
147 |
+
input_image = gr.Image(
|
148 |
+
type="pil",
|
149 |
+
label="📁 Upload Image",
|
150 |
+
interactive=True,
|
151 |
+
height=400
|
152 |
+
)
|
153 |
+
|
154 |
+
with gr.Row():
|
155 |
+
effect_dropdown = gr.Dropdown(
|
156 |
+
["None", "blur", "sharpen", "grayscale", "pixelate"],
|
157 |
+
label="🎭 Select Effect",
|
158 |
+
value="blur"
|
159 |
+
)
|
160 |
+
|
161 |
+
with gr.Row():
|
162 |
+
process_button = gr.Button("✨ Apply Effect", variant="primary", size="lg")
|
163 |
+
detect_button = gr.Button("👤 Detect Faces", variant="secondary", size="lg")
|
164 |
+
|
165 |
+
status_text = gr.Textbox(
|
166 |
+
label="📊 Status",
|
167 |
+
interactive=False,
|
168 |
+
placeholder="Ready to process..."
|
169 |
+
)
|
170 |
+
|
171 |
+
with gr.Column(scale=1):
|
172 |
+
output_image = gr.Image(
|
173 |
+
type="pil",
|
174 |
+
label="🖼️ Processed Image",
|
175 |
+
height=400
|
176 |
+
)
|
177 |
|
178 |
+
# Store click coordinates
|
179 |
+
clicked_x = gr.State(None)
|
180 |
+
clicked_y = gr.State(None)
|
181 |
+
|
182 |
+
def get_coords(evt: gr.SelectData):
|
183 |
+
return evt.index[0], evt.index[1]
|
184 |
+
|
185 |
+
input_image.select(get_coords, None, [clicked_x, clicked_y])
|
186 |
+
|
187 |
+
process_button.click(
|
188 |
+
fn=process_image,
|
189 |
+
inputs=[input_image, clicked_x, clicked_y, effect_dropdown],
|
190 |
+
outputs=[output_image, status_text]
|
191 |
+
)
|
192 |
|
193 |
+
detect_button.click(
|
194 |
+
fn=detect_faces_only,
|
195 |
+
inputs=[input_image],
|
196 |
+
outputs=[output_image, status_text]
|
197 |
)
|
198 |
|
199 |
+
gr.HTML("""
|
200 |
+
<div style='text-align: center; margin-top: 20px; color: #6c757d;'>
|
201 |
+
<p>Built with ❤️ for CPU-friendly image processing | Powered by OpenCV & Gradio</p>
|
202 |
+
</div>
|
203 |
+
""")
|
204 |
+
|
205 |
if __name__ == "__main__":
|
206 |
+
demo.launch()
|
207 |
+
|