Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,53 +1,36 @@
|
|
1 |
-
# app.py
|
2 |
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
from diffusers import AutoPipelineForInpainting
|
6 |
from PIL import Image
|
|
|
7 |
|
8 |
-
# --- Model Loading ---
|
9 |
-
#
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
variant="fp16"
|
17 |
-
).to("cuda")
|
18 |
-
except Exception as e:
|
19 |
-
print(f"Could not load model on GPU: {e}. Falling back to CPU.")
|
20 |
-
pipe = AutoPipelineForInpainting.from_pretrained(
|
21 |
-
"stabilityai/stable-diffusion-2-inpainting"
|
22 |
-
)
|
23 |
|
24 |
# --- The Inpainting Function ---
|
25 |
-
|
26 |
-
def inpaint_image(input_dict, prompt, negative_prompt, guidance_scale, num_steps):
|
27 |
"""
|
28 |
Performs inpainting on an image based on a mask and a prompt.
|
29 |
-
|
30 |
-
Args:
|
31 |
-
input_dict (dict): A dictionary from Gradio's Image component containing 'image' and 'mask'.
|
32 |
-
prompt (str): The text prompt describing what to generate in the masked area.
|
33 |
-
negative_prompt (str): The text prompt describing what to avoid.
|
34 |
-
guidance_scale (float): A value to control how much the generation follows the prompt.
|
35 |
-
num_steps (int): The number of inference steps.
|
36 |
-
|
37 |
-
Returns:
|
38 |
-
PIL.Image: The resulting image after inpainting.
|
39 |
"""
|
40 |
-
# Separate the image and the mask from the input dictionary
|
41 |
image = input_dict["image"].convert("RGB")
|
42 |
mask_image = input_dict["mask"].convert("RGB")
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
# However, it's good practice to inform the user that square images work best.
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
51 |
result_image = pipe(
|
52 |
prompt=prompt,
|
53 |
image=image,
|
@@ -55,7 +38,12 @@ def inpaint_image(input_dict, prompt, negative_prompt, guidance_scale, num_steps
|
|
55 |
negative_prompt=negative_prompt,
|
56 |
guidance_scale=guidance_scale,
|
57 |
num_inference_steps=int(num_steps),
|
|
|
|
|
58 |
).images[0]
|
|
|
|
|
|
|
59 |
|
60 |
return result_image
|
61 |
|
@@ -64,57 +52,40 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
64 |
gr.Markdown(
|
65 |
"""
|
66 |
# 🎨 AI Image Fixer (Inpainting)
|
67 |
-
|
68 |
-
Have an AI-generated image with weird hands, faces, or artifacts? Fix it here!
|
69 |
-
|
70 |
-
**How to use:**
|
71 |
-
1. Upload your image.
|
72 |
-
2. Use the brush tool to "paint" over the parts you want to replace. This is your mask.
|
73 |
-
3. Write a prompt describing what you want in the painted-over area.
|
74 |
-
4. Adjust the advanced settings if you want more control.
|
75 |
-
5. Click "Fix It!" and see the magic happen.
|
76 |
"""
|
77 |
)
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
with gr.Row():
|
80 |
-
# Input column
|
81 |
with gr.Column():
|
82 |
-
gr.Markdown("### 1. Upload & Mask Your Image")
|
83 |
-
# The Image component with a drawing tool for masking
|
84 |
input_image = gr.Image(
|
85 |
-
label="Upload Image & Draw Mask",
|
86 |
-
source="upload",
|
87 |
-
tool="brush",
|
88 |
-
type="pil" # We want to work with PIL images in our function
|
89 |
)
|
90 |
-
|
91 |
-
gr.Markdown("### 2. Describe Your Fix")
|
92 |
-
prompt = gr.Textbox(label="Prompt", placeholder="e.g., 'A beautiful, realistic human hand, detailed fingers'")
|
93 |
-
|
94 |
-
# Accordion for advanced settings to keep the UI clean
|
95 |
with gr.Accordion("Advanced Settings", open=False):
|
96 |
-
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="e.g., 'blurry, distorted, extra fingers
|
97 |
-
guidance_scale = gr.Slider(minimum=0, maximum=20, value=
|
98 |
-
|
|
|
99 |
|
100 |
-
# Output column
|
101 |
with gr.Column():
|
102 |
-
gr.
|
103 |
-
output_image = gr.Image(
|
104 |
-
label="Resulting Image",
|
105 |
-
type="pil"
|
106 |
-
)
|
107 |
|
108 |
-
# The button to trigger the process
|
109 |
submit_button = gr.Button("Fix It!", variant="primary")
|
110 |
|
111 |
-
#
|
112 |
submit_button.click(
|
113 |
fn=inpaint_image,
|
114 |
inputs=[input_image, prompt, negative_prompt, guidance_scale, num_steps],
|
115 |
outputs=output_image
|
116 |
)
|
117 |
|
118 |
-
# Launch the Gradio app
|
119 |
if __name__ == "__main__":
|
120 |
demo.launch()
|
|
|
1 |
+
# app.py (Modified for CPU)
|
2 |
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
from diffusers import AutoPipelineForInpainting
|
6 |
from PIL import Image
|
7 |
+
import time # Import time to measure execution
|
8 |
|
9 |
+
# --- Model Loading (CPU Version) ---
|
10 |
+
# We load the model without GPU-specific options.
|
11 |
+
# This will run on the CPU.
|
12 |
+
print("Loading model on CPU... This may take a moment.")
|
13 |
+
pipe = AutoPipelineForInpainting.from_pretrained(
|
14 |
+
"stabilityai/stable-diffusion-2-inpainting"
|
15 |
+
)
|
16 |
+
print("Model loaded successfully.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# --- The Inpainting Function ---
|
19 |
+
def inpaint_image(input_dict, prompt, negative_prompt, guidance_scale, num_steps, progress=gr.Progress()):
|
|
|
20 |
"""
|
21 |
Performs inpainting on an image based on a mask and a prompt.
|
22 |
+
Includes progress tracking for the slow CPU process.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
"""
|
|
|
24 |
image = input_dict["image"].convert("RGB")
|
25 |
mask_image = input_dict["mask"].convert("RGB")
|
26 |
|
27 |
+
print(f"Starting inpainting with prompt: '{prompt}' on CPU.")
|
28 |
+
start_time = time.time()
|
|
|
29 |
|
30 |
+
# Callback to update the progress bar in the UI
|
31 |
+
def progress_callback(step, timestep, latents):
|
32 |
+
progress(step / int(num_steps), desc=f"Running step {step}/{int(num_steps)}")
|
33 |
+
|
34 |
result_image = pipe(
|
35 |
prompt=prompt,
|
36 |
image=image,
|
|
|
38 |
negative_prompt=negative_prompt,
|
39 |
guidance_scale=guidance_scale,
|
40 |
num_inference_steps=int(num_steps),
|
41 |
+
callback_steps=1,
|
42 |
+
callback=progress_callback,
|
43 |
).images[0]
|
44 |
+
|
45 |
+
end_time = time.time()
|
46 |
+
print(f"Inpainting finished in {end_time - start_time:.2f} seconds.")
|
47 |
|
48 |
return result_image
|
49 |
|
|
|
52 |
gr.Markdown(
|
53 |
"""
|
54 |
# 🎨 AI Image Fixer (Inpainting)
|
55 |
+
Upload an image, mask the area to fix, and describe the change.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
"""
|
57 |
)
|
58 |
|
59 |
+
# *CRUCIAL* Warning for CPU users
|
60 |
+
gr.Warning(
|
61 |
+
"⚠️ This Space is running on a free CPU. "
|
62 |
+
"Image generation will be VERY SLOW (expect 5-15 minutes per image). "
|
63 |
+
"Please be patient! A progress bar will appear below the 'Fix It!' button."
|
64 |
+
)
|
65 |
+
|
66 |
with gr.Row():
|
|
|
67 |
with gr.Column():
|
|
|
|
|
68 |
input_image = gr.Image(
|
69 |
+
label="Upload Image & Draw Mask", source="upload", tool="brush", type="pil"
|
|
|
|
|
|
|
70 |
)
|
71 |
+
prompt = gr.Textbox(label="Prompt", placeholder="e.g., 'A beautiful, realistic human hand'")
|
|
|
|
|
|
|
|
|
72 |
with gr.Accordion("Advanced Settings", open=False):
|
73 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="e.g., 'blurry, distorted, extra fingers'")
|
74 |
+
guidance_scale = gr.Slider(minimum=0, maximum=20, value=7.5, label="Guidance Scale")
|
75 |
+
# Lower the default steps for faster (but lower quality) generation on CPU
|
76 |
+
num_steps = gr.Slider(minimum=5, maximum=50, step=1, value=20, label="Inference Steps")
|
77 |
|
|
|
78 |
with gr.Column():
|
79 |
+
output_image = gr.Image(label="Resulting Image", type="pil")
|
|
|
|
|
|
|
|
|
80 |
|
|
|
81 |
submit_button = gr.Button("Fix It!", variant="primary")
|
82 |
|
83 |
+
# We add a progress component to be updated
|
84 |
submit_button.click(
|
85 |
fn=inpaint_image,
|
86 |
inputs=[input_image, prompt, negative_prompt, guidance_scale, num_steps],
|
87 |
outputs=output_image
|
88 |
)
|
89 |
|
|
|
90 |
if __name__ == "__main__":
|
91 |
demo.launch()
|