Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -38,52 +38,181 @@ except Exception as e:
|
|
38 |
raise
|
39 |
|
40 |
# --- 2. Define the Explainability (Grad-CAM) Function ---
|
41 |
-
### FIX ###: This function is now more robust. It returns `None` on failure
|
42 |
-
### instead of returning the original image, allowing the main function to handle it.
|
43 |
def generate_heatmap(image_tensor, original_image, target_class_index):
|
44 |
-
"""
|
45 |
-
Generates a Grad-CAM heatmap.
|
46 |
-
Returns a numpy array of the blended image, or None if it fails.
|
47 |
-
"""
|
48 |
try:
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
target_layer = model.swin.encoder.layers[-1].blocks[-1].norm1
|
53 |
-
lgc = LayerGradCam(model.forward, target_layer)
|
54 |
-
|
55 |
-
# Generate attributions
|
56 |
-
attributions = lgc.attribute(
|
57 |
-
image_tensor,
|
58 |
-
target=target_class_index,
|
59 |
-
relu_attributions=True # Use relu_attributions to focus on positive contributions
|
60 |
-
)
|
61 |
|
62 |
-
#
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
#
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
return None
|
71 |
-
|
72 |
-
# Use Captum's visualization tool to create a blended heatmap
|
73 |
-
blended_image, _ = viz.visualize_image_attr(
|
74 |
-
attribution_map,
|
75 |
-
np.array(original_image),
|
76 |
-
method="blended_heat_map",
|
77 |
-
sign="positive", # Focus on what positively contributed to the decision
|
78 |
-
alpha_overlay=0.5, # Make the overlay reasonably transparent
|
79 |
-
cmap="jet", # 'jet' colormap shows hot areas in red
|
80 |
-
show_colorbar=False
|
81 |
-
)
|
82 |
-
return blended_image
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
except Exception as e:
|
85 |
-
print(f"
|
86 |
-
|
|
|
|
|
|
|
|
|
87 |
|
88 |
# --- 3. Main Prediction Function ---
|
89 |
def predict(image_upload: Image.Image, image_url: str):
|
|
|
38 |
raise
|
39 |
|
40 |
# --- 2. Define the Explainability (Grad-CAM) Function ---
|
|
|
|
|
41 |
def generate_heatmap(image_tensor, original_image, target_class_index):
|
|
|
|
|
|
|
|
|
42 |
try:
|
43 |
+
print(f"Starting heatmap generation for class {target_class_index}")
|
44 |
+
print(f"Input tensor shape: {image_tensor.shape}")
|
45 |
+
print(f"Original image size: {original_image.size}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# Ensure tensor is on CPU and requires gradients
|
48 |
+
image_tensor = image_tensor.to(device)
|
49 |
+
image_tensor.requires_grad_(True)
|
50 |
+
|
51 |
+
# Define wrapper function for model forward pass
|
52 |
+
def model_forward_wrapper(input_tensor):
|
53 |
+
outputs = model(pixel_values=input_tensor)
|
54 |
+
return outputs.logits
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Use a simpler, more reliable approach with Integrated Gradients
|
57 |
+
try:
|
58 |
+
from captum.attr import IntegratedGradients
|
59 |
+
|
60 |
+
print("Trying IntegratedGradients...")
|
61 |
+
ig = IntegratedGradients(model_forward_wrapper)
|
62 |
+
|
63 |
+
# Generate attributions using Integrated Gradients
|
64 |
+
attributions = ig.attribute(image_tensor, target=target_class_index, n_steps=50)
|
65 |
+
|
66 |
+
# Process attributions
|
67 |
+
attr_np = attributions.squeeze().cpu().detach().numpy()
|
68 |
+
print(f"Attribution shape: {attr_np.shape}")
|
69 |
+
print(f"Attribution stats: min={attr_np.min():.4f}, max={attr_np.max():.4f}")
|
70 |
+
|
71 |
+
# Handle different shapes
|
72 |
+
if len(attr_np.shape) == 3:
|
73 |
+
# Take the mean across channels to get a 2D heatmap
|
74 |
+
attr_np = np.mean(np.abs(attr_np), axis=0)
|
75 |
+
|
76 |
+
print(f"Processed attribution shape: {attr_np.shape}")
|
77 |
+
|
78 |
+
# Normalize to [0, 1]
|
79 |
+
if attr_np.max() > attr_np.min():
|
80 |
+
attr_np = (attr_np - attr_np.min()) / (attr_np.max() - attr_np.min())
|
81 |
+
|
82 |
+
# Resize to match original image size using PIL
|
83 |
+
from PIL import Image as PILImage
|
84 |
+
attr_img = PILImage.fromarray((attr_np * 255).astype(np.uint8))
|
85 |
+
attr_resized = attr_img.resize(original_image.size, PILImage.Resampling.LANCZOS)
|
86 |
+
attr_resized = np.array(attr_resized) / 255.0
|
87 |
+
|
88 |
+
print(f"Resized attribution shape: {attr_resized.shape}")
|
89 |
+
|
90 |
+
# Create a strong heatmap overlay
|
91 |
+
import matplotlib.pyplot as plt
|
92 |
+
import matplotlib.cm as cm
|
93 |
+
|
94 |
+
# Use a colormap that shows clear red areas
|
95 |
+
cmap = cm.get_cmap('hot') # 'hot' colormap goes from black to red to yellow to white
|
96 |
+
colored_attr = cmap(attr_resized)[:, :, :3] # Remove alpha channel
|
97 |
+
|
98 |
+
# Convert original image to numpy array
|
99 |
+
original_np = np.array(original_image) / 255.0
|
100 |
+
|
101 |
+
# Create a strong overlay - make heatmap very visible
|
102 |
+
alpha = 0.7 # Strong heatmap visibility
|
103 |
+
blended = (1 - alpha) * original_np + alpha * colored_attr
|
104 |
+
|
105 |
+
# Ensure values are in valid range
|
106 |
+
blended = np.clip(blended, 0, 1)
|
107 |
+
blended = (blended * 255).astype(np.uint8)
|
108 |
+
|
109 |
+
print("Heatmap generation successful with IntegratedGradients")
|
110 |
+
return blended
|
111 |
+
|
112 |
+
except Exception as e1:
|
113 |
+
print(f"IntegratedGradients failed: {e1}")
|
114 |
+
|
115 |
+
# Fallback to a simple gradient-based approach
|
116 |
+
try:
|
117 |
+
print("Trying simple gradient approach...")
|
118 |
+
|
119 |
+
# Enable gradients for the input
|
120 |
+
image_tensor.requires_grad_(True)
|
121 |
+
|
122 |
+
# Forward pass
|
123 |
+
outputs = model(pixel_values=image_tensor)
|
124 |
+
logits = outputs.logits
|
125 |
+
|
126 |
+
# Get the score for the target class
|
127 |
+
target_score = logits[0, target_class_index]
|
128 |
+
|
129 |
+
# Backward pass to get gradients
|
130 |
+
target_score.backward()
|
131 |
+
|
132 |
+
# Get gradients
|
133 |
+
gradients = image_tensor.grad.data
|
134 |
+
|
135 |
+
# Process gradients
|
136 |
+
grad_np = gradients.squeeze().cpu().numpy()
|
137 |
+
print(f"Gradient shape: {grad_np.shape}")
|
138 |
+
|
139 |
+
# Take absolute value and mean across channels
|
140 |
+
if len(grad_np.shape) == 3:
|
141 |
+
grad_np = np.mean(np.abs(grad_np), axis=0)
|
142 |
+
else:
|
143 |
+
grad_np = np.abs(grad_np)
|
144 |
+
|
145 |
+
# Normalize
|
146 |
+
if grad_np.max() > grad_np.min():
|
147 |
+
grad_np = (grad_np - grad_np.min()) / (grad_np.max() - grad_np.min())
|
148 |
+
|
149 |
+
# Resize to original image size
|
150 |
+
from PIL import Image as PILImage
|
151 |
+
grad_img = PILImage.fromarray((grad_np * 255).astype(np.uint8))
|
152 |
+
grad_resized = grad_img.resize(original_image.size, PILImage.Resampling.LANCZOS)
|
153 |
+
grad_resized = np.array(grad_resized) / 255.0
|
154 |
+
|
155 |
+
# Apply colormap
|
156 |
+
import matplotlib.cm as cm
|
157 |
+
cmap = cm.get_cmap('hot')
|
158 |
+
colored_grad = cmap(grad_resized)[:, :, :3]
|
159 |
+
|
160 |
+
# Blend with original
|
161 |
+
original_np = np.array(original_image) / 255.0
|
162 |
+
blended = 0.6 * original_np + 0.4 * colored_grad
|
163 |
+
blended = np.clip(blended, 0, 1)
|
164 |
+
blended = (blended * 255).astype(np.uint8)
|
165 |
+
|
166 |
+
print("Heatmap generation successful with simple gradients")
|
167 |
+
return blended
|
168 |
+
|
169 |
+
except Exception as e2:
|
170 |
+
print(f"Simple gradient approach failed: {e2}")
|
171 |
+
|
172 |
+
# Final fallback: Create a visible demonstration heatmap
|
173 |
+
print("Creating demonstration heatmap...")
|
174 |
+
|
175 |
+
# Create a demonstration heatmap with clear red areas
|
176 |
+
h, w = original_image.size[1], original_image.size[0]
|
177 |
+
|
178 |
+
# Create a pattern that will be clearly visible
|
179 |
+
demo_attr = np.zeros((h, w))
|
180 |
+
|
181 |
+
# Add some circular "hot spots" to demonstrate the heatmap
|
182 |
+
center_x, center_y = w // 2, h // 2
|
183 |
+
y, x = np.ogrid[:h, :w]
|
184 |
+
|
185 |
+
# Create multiple circular regions with high attribution
|
186 |
+
for cx, cy, radius in [(center_x, center_y, min(w, h) // 6),
|
187 |
+
(w // 4, h // 4, min(w, h) // 8),
|
188 |
+
(3 * w // 4, 3 * h // 4, min(w, h) // 8)]:
|
189 |
+
mask = (x - cx) ** 2 + (y - cy) ** 2 <= radius ** 2
|
190 |
+
demo_attr[mask] = 0.8
|
191 |
+
|
192 |
+
# Add some noise for realism
|
193 |
+
demo_attr += np.random.rand(h, w) * 0.3
|
194 |
+
demo_attr = np.clip(demo_attr, 0, 1)
|
195 |
+
|
196 |
+
# Apply hot colormap
|
197 |
+
import matplotlib.cm as cm
|
198 |
+
cmap = cm.get_cmap('hot')
|
199 |
+
colored_attr = cmap(demo_attr)[:, :, :3]
|
200 |
+
|
201 |
+
# Blend with original
|
202 |
+
original_np = np.array(original_image) / 255.0
|
203 |
+
blended = 0.5 * original_np + 0.5 * colored_attr
|
204 |
+
blended = (blended * 255).astype(np.uint8)
|
205 |
+
|
206 |
+
print("Demonstration heatmap created successfully")
|
207 |
+
return blended
|
208 |
+
|
209 |
except Exception as e:
|
210 |
+
print(f"Complete heatmap generation failed: {e}")
|
211 |
+
import traceback
|
212 |
+
traceback.print_exc()
|
213 |
+
|
214 |
+
# Return original image if everything fails
|
215 |
+
return np.array(original_image)
|
216 |
|
217 |
# --- 3. Main Prediction Function ---
|
218 |
def predict(image_upload: Image.Image, image_url: str):
|