Spaces:
Sleeping
Sleeping
File size: 29,802 Bytes
375a1cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 |
__credits__ = ["Andrea PIERRÉ"]
import math
import warnings
from typing import TYPE_CHECKING, Optional
import numpy as np
import gym
from gym import error, spaces
from gym.error import DependencyNotInstalled
from gym.utils import EzPickle, colorize
from gym.utils.step_api_compatibility import step_api_compatibility
try:
import Box2D
from Box2D.b2 import (
circleShape,
contactListener,
edgeShape,
fixtureDef,
polygonShape,
revoluteJointDef,
)
except ImportError:
raise DependencyNotInstalled("box2d is not installed, run `pip install gym[box2d]`")
if TYPE_CHECKING:
import pygame
FPS = 50
SCALE = 30.0 # affects how fast-paced the game is, forces should be adjusted as well
MAIN_ENGINE_POWER = 13.0
SIDE_ENGINE_POWER = 0.6
INITIAL_RANDOM = 1000.0 # Set 1500 to make game harder
LANDER_POLY = [(-14, +17), (-17, 0), (-17, -10), (+17, -10), (+17, 0), (+14, +17)]
LEG_AWAY = 20
LEG_DOWN = 18
LEG_W, LEG_H = 2, 8
LEG_SPRING_TORQUE = 40
SIDE_ENGINE_HEIGHT = 14.0
SIDE_ENGINE_AWAY = 12.0
VIEWPORT_W = 600
VIEWPORT_H = 400
class ContactDetector(contactListener):
def __init__(self, env):
contactListener.__init__(self)
self.env = env
def BeginContact(self, contact):
if (
self.env.lander == contact.fixtureA.body
or self.env.lander == contact.fixtureB.body
):
self.env.game_over = True
for i in range(2):
if self.env.legs[i] in [contact.fixtureA.body, contact.fixtureB.body]:
self.env.legs[i].ground_contact = True
def EndContact(self, contact):
for i in range(2):
if self.env.legs[i] in [contact.fixtureA.body, contact.fixtureB.body]:
self.env.legs[i].ground_contact = False
class LunarLander(gym.Env, EzPickle):
"""
### Description
This environment is a classic rocket trajectory optimization problem.
According to Pontryagin's maximum principle, it is optimal to fire the
engine at full throttle or turn it off. This is the reason why this
environment has discrete actions: engine on or off.
There are two environment versions: discrete or continuous.
The landing pad is always at coordinates (0,0). The coordinates are the
first two numbers in the state vector.
Landing outside of the landing pad is possible. Fuel is infinite, so an agent
can learn to fly and then land on its first attempt.
To see a heuristic landing, run:
```
python gym/envs/box2d/lunar_lander.py
```
<!-- To play yourself, run: -->
<!-- python examples/agents/keyboard_agent.py LunarLander-v2 -->
### Action Space
There are four discrete actions available: do nothing, fire left
orientation engine, fire main engine, fire right orientation engine.
### Observation Space
The state is an 8-dimensional vector: the coordinates of the lander in `x` & `y`, its linear
velocities in `x` & `y`, its angle, its angular velocity, and two booleans
that represent whether each leg is in contact with the ground or not.
### Rewards
After every step a reward is granted. The total reward of an episode is the
sum of the rewards for all the steps within that episode.
For each step, the reward:
- is increased/decreased the closer/further the lander is to the landing pad.
- is increased/decreased the slower/faster the lander is moving.
- is decreased the more the lander is tilted (angle not horizontal).
- is increased by 10 points for each leg that is in contact with the ground.
- is decreased by 0.03 points each frame a side engine is firing.
- is decreased by 0.3 points each frame the main engine is firing.
The episode receive an additional reward of -100 or +100 points for crashing or landing safely respectively.
An episode is considered a solution if it scores at least 200 points.
### Starting State
The lander starts at the top center of the viewport with a random initial
force applied to its center of mass.
### Episode Termination
The episode finishes if:
1) the lander crashes (the lander body gets in contact with the moon);
2) the lander gets outside of the viewport (`x` coordinate is greater than 1);
3) the lander is not awake. From the [Box2D docs](https://box2d.org/documentation/md__d_1__git_hub_box2d_docs_dynamics.html#autotoc_md61),
a body which is not awake is a body which doesn't move and doesn't
collide with any other body:
> When Box2D determines that a body (or group of bodies) has come to rest,
> the body enters a sleep state which has very little CPU overhead. If a
> body is awake and collides with a sleeping body, then the sleeping body
> wakes up. Bodies will also wake up if a joint or contact attached to
> them is destroyed.
### Arguments
To use to the _continuous_ environment, you need to specify the
`continuous=True` argument like below:
```python
import gym
env = gym.make(
"LunarLander-v2",
continuous: bool = False,
gravity: float = -10.0,
enable_wind: bool = False,
wind_power: float = 15.0,
turbulence_power: float = 1.5,
)
```
If `continuous=True` is passed, continuous actions (corresponding to the throttle of the engines) will be used and the
action space will be `Box(-1, +1, (2,), dtype=np.float32)`.
The first coordinate of an action determines the throttle of the main engine, while the second
coordinate specifies the throttle of the lateral boosters.
Given an action `np.array([main, lateral])`, the main engine will be turned off completely if
`main < 0` and the throttle scales affinely from 50% to 100% for `0 <= main <= 1` (in particular, the
main engine doesn't work with less than 50% power).
Similarly, if `-0.5 < lateral < 0.5`, the lateral boosters will not fire at all. If `lateral < -0.5`, the left
booster will fire, and if `lateral > 0.5`, the right booster will fire. Again, the throttle scales affinely
from 50% to 100% between -1 and -0.5 (and 0.5 and 1, respectively).
`gravity` dictates the gravitational constant, this is bounded to be within 0 and -12.
If `enable_wind=True` is passed, there will be wind effects applied to the lander.
The wind is generated using the function `tanh(sin(2 k (t+C)) + sin(pi k (t+C)))`.
`k` is set to 0.01.
`C` is sampled randomly between -9999 and 9999.
`wind_power` dictates the maximum magnitude of linear wind applied to the craft. The recommended value for `wind_power` is between 0.0 and 20.0.
`turbulence_power` dictates the maximum magnitude of rotational wind applied to the craft. The recommended value for `turbulence_power` is between 0.0 and 2.0.
### Version History
- v2: Count energy spent and in v0.24, added turbulance with wind power and turbulence_power parameters
- v1: Legs contact with ground added in state vector; contact with ground
give +10 reward points, and -10 if then lose contact; reward
renormalized to 200; harder initial random push.
- v0: Initial version
<!-- ### References -->
### Credits
Created by Oleg Klimov
"""
metadata = {
"render_modes": ["human", "rgb_array"],
"render_fps": FPS,
}
def __init__(
self,
render_mode: Optional[str] = None,
continuous: bool = False,
gravity: float = -10.0,
enable_wind: bool = False,
wind_power: float = 15.0,
turbulence_power: float = 1.5,
):
EzPickle.__init__(
self,
render_mode,
continuous,
gravity,
enable_wind,
wind_power,
turbulence_power,
)
assert (
-12.0 < gravity and gravity < 0.0
), f"gravity (current value: {gravity}) must be between -12 and 0"
self.gravity = gravity
if 0.0 > wind_power or wind_power > 20.0:
warnings.warn(
colorize(
f"WARN: wind_power value is recommended to be between 0.0 and 20.0, (current value: {wind_power})",
"yellow",
),
)
self.wind_power = wind_power
if 0.0 > turbulence_power or turbulence_power > 2.0:
warnings.warn(
colorize(
f"WARN: turbulence_power value is recommended to be between 0.0 and 2.0, (current value: {turbulence_power})",
"yellow",
),
)
self.turbulence_power = turbulence_power
self.enable_wind = enable_wind
self.wind_idx = np.random.randint(-9999, 9999)
self.torque_idx = np.random.randint(-9999, 9999)
self.screen: pygame.Surface = None
self.clock = None
self.isopen = True
self.world = Box2D.b2World(gravity=(0, gravity))
self.moon = None
self.lander: Optional[Box2D.b2Body] = None
self.particles = []
self.prev_reward = None
self.continuous = continuous
low = np.array(
[
# these are bounds for position
# realistically the environment should have ended
# long before we reach more than 50% outside
-1.5,
-1.5,
# velocity bounds is 5x rated speed
-5.0,
-5.0,
-math.pi,
-5.0,
-0.0,
-0.0,
]
).astype(np.float32)
high = np.array(
[
# these are bounds for position
# realistically the environment should have ended
# long before we reach more than 50% outside
1.5,
1.5,
# velocity bounds is 5x rated speed
5.0,
5.0,
math.pi,
5.0,
1.0,
1.0,
]
).astype(np.float32)
# useful range is -1 .. +1, but spikes can be higher
self.observation_space = spaces.Box(low, high)
if self.continuous:
# Action is two floats [main engine, left-right engines].
# Main engine: -1..0 off, 0..+1 throttle from 50% to 100% power. Engine can't work with less than 50% power.
# Left-right: -1.0..-0.5 fire left engine, +0.5..+1.0 fire right engine, -0.5..0.5 off
self.action_space = spaces.Box(-1, +1, (2,), dtype=np.float32)
else:
# Nop, fire left engine, main engine, right engine
self.action_space = spaces.Discrete(4)
self.render_mode = render_mode
def _destroy(self):
if not self.moon:
return
self.world.contactListener = None
self._clean_particles(True)
self.world.DestroyBody(self.moon)
self.moon = None
self.world.DestroyBody(self.lander)
self.lander = None
self.world.DestroyBody(self.legs[0])
self.world.DestroyBody(self.legs[1])
def reset(
self,
*,
seed: Optional[int] = None,
options: Optional[dict] = None,
):
super().reset(seed=seed)
self._destroy()
self.world.contactListener_keepref = ContactDetector(self)
self.world.contactListener = self.world.contactListener_keepref
self.game_over = False
self.prev_shaping = None
W = VIEWPORT_W / SCALE
H = VIEWPORT_H / SCALE
# terrain
CHUNKS = 11
height = self.np_random.uniform(0, H / 2, size=(CHUNKS + 1,))
chunk_x = [W / (CHUNKS - 1) * i for i in range(CHUNKS)]
self.helipad_x1 = chunk_x[CHUNKS // 2 - 1]
self.helipad_x2 = chunk_x[CHUNKS // 2 + 1]
self.helipad_y = H / 4
height[CHUNKS // 2 - 2] = self.helipad_y
height[CHUNKS // 2 - 1] = self.helipad_y
height[CHUNKS // 2 + 0] = self.helipad_y
height[CHUNKS // 2 + 1] = self.helipad_y
height[CHUNKS // 2 + 2] = self.helipad_y
smooth_y = [
0.33 * (height[i - 1] + height[i + 0] + height[i + 1])
for i in range(CHUNKS)
]
self.moon = self.world.CreateStaticBody(
shapes=edgeShape(vertices=[(0, 0), (W, 0)])
)
self.sky_polys = []
for i in range(CHUNKS - 1):
p1 = (chunk_x[i], smooth_y[i])
p2 = (chunk_x[i + 1], smooth_y[i + 1])
self.moon.CreateEdgeFixture(vertices=[p1, p2], density=0, friction=0.1)
self.sky_polys.append([p1, p2, (p2[0], H), (p1[0], H)])
self.moon.color1 = (0.0, 0.0, 0.0)
self.moon.color2 = (0.0, 0.0, 0.0)
initial_y = VIEWPORT_H / SCALE
self.lander: Box2D.b2Body = self.world.CreateDynamicBody(
position=(VIEWPORT_W / SCALE / 2, initial_y),
angle=0.0,
fixtures=fixtureDef(
shape=polygonShape(
vertices=[(x / SCALE, y / SCALE) for x, y in LANDER_POLY]
),
density=5.0,
friction=0.1,
categoryBits=0x0010,
maskBits=0x001, # collide only with ground
restitution=0.0,
), # 0.99 bouncy
)
self.lander.color1 = (128, 102, 230)
self.lander.color2 = (77, 77, 128)
self.lander.ApplyForceToCenter(
(
self.np_random.uniform(-INITIAL_RANDOM, INITIAL_RANDOM),
self.np_random.uniform(-INITIAL_RANDOM, INITIAL_RANDOM),
),
True,
)
self.legs = []
for i in [-1, +1]:
leg = self.world.CreateDynamicBody(
position=(VIEWPORT_W / SCALE / 2 - i * LEG_AWAY / SCALE, initial_y),
angle=(i * 0.05),
fixtures=fixtureDef(
shape=polygonShape(box=(LEG_W / SCALE, LEG_H / SCALE)),
density=1.0,
restitution=0.0,
categoryBits=0x0020,
maskBits=0x001,
),
)
leg.ground_contact = False
leg.color1 = (128, 102, 230)
leg.color2 = (77, 77, 128)
rjd = revoluteJointDef(
bodyA=self.lander,
bodyB=leg,
localAnchorA=(0, 0),
localAnchorB=(i * LEG_AWAY / SCALE, LEG_DOWN / SCALE),
enableMotor=True,
enableLimit=True,
maxMotorTorque=LEG_SPRING_TORQUE,
motorSpeed=+0.3 * i, # low enough not to jump back into the sky
)
if i == -1:
rjd.lowerAngle = (
+0.9 - 0.5
) # The most esoteric numbers here, angled legs have freedom to travel within
rjd.upperAngle = +0.9
else:
rjd.lowerAngle = -0.9
rjd.upperAngle = -0.9 + 0.5
leg.joint = self.world.CreateJoint(rjd)
self.legs.append(leg)
self.drawlist = [self.lander] + self.legs
if self.render_mode == "human":
self.render()
return self.step(np.array([0, 0]) if self.continuous else 0)[0], {}
def _create_particle(self, mass, x, y, ttl):
p = self.world.CreateDynamicBody(
position=(x, y),
angle=0.0,
fixtures=fixtureDef(
shape=circleShape(radius=2 / SCALE, pos=(0, 0)),
density=mass,
friction=0.1,
categoryBits=0x0100,
maskBits=0x001, # collide only with ground
restitution=0.3,
),
)
p.ttl = ttl
self.particles.append(p)
self._clean_particles(False)
return p
def _clean_particles(self, all):
while self.particles and (all or self.particles[0].ttl < 0):
self.world.DestroyBody(self.particles.pop(0))
def step(self, action):
assert self.lander is not None
# Update wind
assert self.lander is not None, "You forgot to call reset()"
if self.enable_wind and not (
self.legs[0].ground_contact or self.legs[1].ground_contact
):
# the function used for wind is tanh(sin(2 k x) + sin(pi k x)),
# which is proven to never be periodic, k = 0.01
wind_mag = (
math.tanh(
math.sin(0.02 * self.wind_idx)
+ (math.sin(math.pi * 0.01 * self.wind_idx))
)
* self.wind_power
)
self.wind_idx += 1
self.lander.ApplyForceToCenter(
(wind_mag, 0.0),
True,
)
# the function used for torque is tanh(sin(2 k x) + sin(pi k x)),
# which is proven to never be periodic, k = 0.01
torque_mag = math.tanh(
math.sin(0.02 * self.torque_idx)
+ (math.sin(math.pi * 0.01 * self.torque_idx))
) * (self.turbulence_power)
self.torque_idx += 1
self.lander.ApplyTorque(
(torque_mag),
True,
)
if self.continuous:
action = np.clip(action, -1, +1).astype(np.float32)
else:
assert self.action_space.contains(
action
), f"{action!r} ({type(action)}) invalid "
# Engines
tip = (math.sin(self.lander.angle), math.cos(self.lander.angle))
side = (-tip[1], tip[0])
dispersion = [self.np_random.uniform(-1.0, +1.0) / SCALE for _ in range(2)]
m_power = 0.0
if (self.continuous and action[0] > 0.0) or (
not self.continuous and action == 2
):
# Main engine
if self.continuous:
m_power = (np.clip(action[0], 0.0, 1.0) + 1.0) * 0.5 # 0.5..1.0
assert m_power >= 0.5 and m_power <= 1.0
else:
m_power = 1.0
# 4 is move a bit downwards, +-2 for randomness
ox = tip[0] * (4 / SCALE + 2 * dispersion[0]) + side[0] * dispersion[1]
oy = -tip[1] * (4 / SCALE + 2 * dispersion[0]) - side[1] * dispersion[1]
impulse_pos = (self.lander.position[0] + ox, self.lander.position[1] + oy)
p = self._create_particle(
3.5, # 3.5 is here to make particle speed adequate
impulse_pos[0],
impulse_pos[1],
m_power,
) # particles are just a decoration
p.ApplyLinearImpulse(
(ox * MAIN_ENGINE_POWER * m_power, oy * MAIN_ENGINE_POWER * m_power),
impulse_pos,
True,
)
self.lander.ApplyLinearImpulse(
(-ox * MAIN_ENGINE_POWER * m_power, -oy * MAIN_ENGINE_POWER * m_power),
impulse_pos,
True,
)
s_power = 0.0
if (self.continuous and np.abs(action[1]) > 0.5) or (
not self.continuous and action in [1, 3]
):
# Orientation engines
if self.continuous:
direction = np.sign(action[1])
s_power = np.clip(np.abs(action[1]), 0.5, 1.0)
assert s_power >= 0.5 and s_power <= 1.0
else:
direction = action - 2
s_power = 1.0
ox = tip[0] * dispersion[0] + side[0] * (
3 * dispersion[1] + direction * SIDE_ENGINE_AWAY / SCALE
)
oy = -tip[1] * dispersion[0] - side[1] * (
3 * dispersion[1] + direction * SIDE_ENGINE_AWAY / SCALE
)
impulse_pos = (
self.lander.position[0] + ox - tip[0] * 17 / SCALE,
self.lander.position[1] + oy + tip[1] * SIDE_ENGINE_HEIGHT / SCALE,
)
p = self._create_particle(0.7, impulse_pos[0], impulse_pos[1], s_power)
p.ApplyLinearImpulse(
(ox * SIDE_ENGINE_POWER * s_power, oy * SIDE_ENGINE_POWER * s_power),
impulse_pos,
True,
)
self.lander.ApplyLinearImpulse(
(-ox * SIDE_ENGINE_POWER * s_power, -oy * SIDE_ENGINE_POWER * s_power),
impulse_pos,
True,
)
self.world.Step(1.0 / FPS, 6 * 30, 2 * 30)
pos = self.lander.position
vel = self.lander.linearVelocity
state = [
(pos.x - VIEWPORT_W / SCALE / 2) / (VIEWPORT_W / SCALE / 2),
(pos.y - (self.helipad_y + LEG_DOWN / SCALE)) / (VIEWPORT_H / SCALE / 2),
vel.x * (VIEWPORT_W / SCALE / 2) / FPS,
vel.y * (VIEWPORT_H / SCALE / 2) / FPS,
self.lander.angle,
20.0 * self.lander.angularVelocity / FPS,
1.0 if self.legs[0].ground_contact else 0.0,
1.0 if self.legs[1].ground_contact else 0.0,
]
assert len(state) == 8
reward = 0
shaping = (
-100 * np.sqrt(state[0] * state[0] + state[1] * state[1])
- 100 * np.sqrt(state[2] * state[2] + state[3] * state[3])
- 100 * abs(state[4])
+ 10 * state[6]
+ 10 * state[7]
) # And ten points for legs contact, the idea is if you
# lose contact again after landing, you get negative reward
if self.prev_shaping is not None:
reward = shaping - self.prev_shaping
self.prev_shaping = shaping
reward -= (
m_power * 0.30
) # less fuel spent is better, about -30 for heuristic landing
reward -= s_power * 0.03
terminated = False
if self.game_over or abs(state[0]) >= 1.0:
terminated = True
reward = -100
if not self.lander.awake:
terminated = True
reward = +100
if self.render_mode == "human":
self.render()
return np.array(state, dtype=np.float32), reward, terminated, False, {}
def render(self):
if self.render_mode is None:
gym.logger.warn(
"You are calling render method without specifying any render mode. "
"You can specify the render_mode at initialization, "
f'e.g. gym("{self.spec.id}", render_mode="rgb_array")'
)
return
try:
import pygame
from pygame import gfxdraw
except ImportError:
raise DependencyNotInstalled(
"pygame is not installed, run `pip install gym[box2d]`"
)
if self.screen is None and self.render_mode == "human":
pygame.init()
pygame.display.init()
self.screen = pygame.display.set_mode((VIEWPORT_W, VIEWPORT_H))
if self.clock is None:
self.clock = pygame.time.Clock()
self.surf = pygame.Surface((VIEWPORT_W, VIEWPORT_H))
pygame.transform.scale(self.surf, (SCALE, SCALE))
pygame.draw.rect(self.surf, (255, 255, 255), self.surf.get_rect())
for obj in self.particles:
obj.ttl -= 0.15
obj.color1 = (
int(max(0.2, 0.15 + obj.ttl) * 255),
int(max(0.2, 0.5 * obj.ttl) * 255),
int(max(0.2, 0.5 * obj.ttl) * 255),
)
obj.color2 = (
int(max(0.2, 0.15 + obj.ttl) * 255),
int(max(0.2, 0.5 * obj.ttl) * 255),
int(max(0.2, 0.5 * obj.ttl) * 255),
)
self._clean_particles(False)
for p in self.sky_polys:
scaled_poly = []
for coord in p:
scaled_poly.append((coord[0] * SCALE, coord[1] * SCALE))
pygame.draw.polygon(self.surf, (0, 0, 0), scaled_poly)
gfxdraw.aapolygon(self.surf, scaled_poly, (0, 0, 0))
for obj in self.particles + self.drawlist:
for f in obj.fixtures:
trans = f.body.transform
if type(f.shape) is circleShape:
pygame.draw.circle(
self.surf,
color=obj.color1,
center=trans * f.shape.pos * SCALE,
radius=f.shape.radius * SCALE,
)
pygame.draw.circle(
self.surf,
color=obj.color2,
center=trans * f.shape.pos * SCALE,
radius=f.shape.radius * SCALE,
)
else:
path = [trans * v * SCALE for v in f.shape.vertices]
pygame.draw.polygon(self.surf, color=obj.color1, points=path)
gfxdraw.aapolygon(self.surf, path, obj.color1)
pygame.draw.aalines(
self.surf, color=obj.color2, points=path, closed=True
)
for x in [self.helipad_x1, self.helipad_x2]:
x = x * SCALE
flagy1 = self.helipad_y * SCALE
flagy2 = flagy1 + 50
pygame.draw.line(
self.surf,
color=(255, 255, 255),
start_pos=(x, flagy1),
end_pos=(x, flagy2),
width=1,
)
pygame.draw.polygon(
self.surf,
color=(204, 204, 0),
points=[
(x, flagy2),
(x, flagy2 - 10),
(x + 25, flagy2 - 5),
],
)
gfxdraw.aapolygon(
self.surf,
[(x, flagy2), (x, flagy2 - 10), (x + 25, flagy2 - 5)],
(204, 204, 0),
)
self.surf = pygame.transform.flip(self.surf, False, True)
if self.render_mode == "human":
assert self.screen is not None
self.screen.blit(self.surf, (0, 0))
pygame.event.pump()
self.clock.tick(self.metadata["render_fps"])
pygame.display.flip()
elif self.render_mode == "rgb_array":
return np.transpose(
np.array(pygame.surfarray.pixels3d(self.surf)), axes=(1, 0, 2)
)
def close(self):
if self.screen is not None:
import pygame
pygame.display.quit()
pygame.quit()
self.isopen = False
def heuristic(env, s):
"""
The heuristic for
1. Testing
2. Demonstration rollout.
Args:
env: The environment
s (list): The state. Attributes:
s[0] is the horizontal coordinate
s[1] is the vertical coordinate
s[2] is the horizontal speed
s[3] is the vertical speed
s[4] is the angle
s[5] is the angular speed
s[6] 1 if first leg has contact, else 0
s[7] 1 if second leg has contact, else 0
Returns:
a: The heuristic to be fed into the step function defined above to determine the next step and reward.
"""
angle_targ = s[0] * 0.5 + s[2] * 1.0 # angle should point towards center
if angle_targ > 0.4:
angle_targ = 0.4 # more than 0.4 radians (22 degrees) is bad
if angle_targ < -0.4:
angle_targ = -0.4
hover_targ = 0.55 * np.abs(
s[0]
) # target y should be proportional to horizontal offset
angle_todo = (angle_targ - s[4]) * 0.5 - (s[5]) * 1.0
hover_todo = (hover_targ - s[1]) * 0.5 - (s[3]) * 0.5
if s[6] or s[7]: # legs have contact
angle_todo = 0
hover_todo = (
-(s[3]) * 0.5
) # override to reduce fall speed, that's all we need after contact
if env.continuous:
a = np.array([hover_todo * 20 - 1, -angle_todo * 20])
a = np.clip(a, -1, +1)
else:
a = 0
if hover_todo > np.abs(angle_todo) and hover_todo > 0.05:
a = 2
elif angle_todo < -0.05:
a = 3
elif angle_todo > +0.05:
a = 1
return a
def demo_heuristic_lander(env, seed=None, render=False):
total_reward = 0
steps = 0
s, info = env.reset(seed=seed)
while True:
a = heuristic(env, s)
s, r, terminated, truncated, info = step_api_compatibility(env.step(a), True)
total_reward += r
if render:
still_open = env.render()
if still_open is False:
break
if steps % 20 == 0 or terminated or truncated:
print("observations:", " ".join([f"{x:+0.2f}" for x in s]))
print(f"step {steps} total_reward {total_reward:+0.2f}")
steps += 1
if terminated or truncated:
break
if render:
env.close()
return total_reward
class LunarLanderContinuous:
def __init__(self):
raise error.Error(
"Error initializing LunarLanderContinuous Environment.\n"
"Currently, we do not support initializing this mode of environment by calling the class directly.\n"
"To use this environment, instead create it by specifying the continuous keyword in gym.make, i.e.\n"
'gym.make("LunarLander-v2", continuous=True)'
)
if __name__ == "__main__":
demo_heuristic_lander(LunarLander(), render=True)
|