Spaces:
Sleeping
Sleeping
File size: 11,919 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
"""Functions for measuring the quality of a partition (into
communities).
"""
from itertools import combinations
import networkx as nx
from networkx import NetworkXError
from networkx.algorithms.community.community_utils import is_partition
from networkx.utils.decorators import argmap
__all__ = ["modularity", "partition_quality"]
class NotAPartition(NetworkXError):
"""Raised if a given collection is not a partition."""
def __init__(self, G, collection):
msg = f"{collection} is not a valid partition of the graph {G}"
super().__init__(msg)
def _require_partition(G, partition):
"""Decorator to check that a valid partition is input to a function
Raises :exc:`networkx.NetworkXError` if the partition is not valid.
This decorator should be used on functions whose first two arguments
are a graph and a partition of the nodes of that graph (in that
order)::
>>> @require_partition
... def foo(G, partition):
... print("partition is valid!")
...
>>> G = nx.complete_graph(5)
>>> partition = [{0, 1}, {2, 3}, {4}]
>>> foo(G, partition)
partition is valid!
>>> partition = [{0}, {2, 3}, {4}]
>>> foo(G, partition)
Traceback (most recent call last):
...
networkx.exception.NetworkXError: `partition` is not a valid partition of the nodes of G
>>> partition = [{0, 1}, {1, 2, 3}, {4}]
>>> foo(G, partition)
Traceback (most recent call last):
...
networkx.exception.NetworkXError: `partition` is not a valid partition of the nodes of G
"""
if is_partition(G, partition):
return G, partition
raise nx.NetworkXError("`partition` is not a valid partition of the nodes of G")
require_partition = argmap(_require_partition, (0, 1))
@nx._dispatch
def intra_community_edges(G, partition):
"""Returns the number of intra-community edges for a partition of `G`.
Parameters
----------
G : NetworkX graph.
partition : iterable of sets of nodes
This must be a partition of the nodes of `G`.
The "intra-community edges" are those edges joining a pair of nodes
in the same block of the partition.
"""
return sum(G.subgraph(block).size() for block in partition)
@nx._dispatch
def inter_community_edges(G, partition):
"""Returns the number of inter-community edges for a partition of `G`.
according to the given
partition of the nodes of `G`.
Parameters
----------
G : NetworkX graph.
partition : iterable of sets of nodes
This must be a partition of the nodes of `G`.
The *inter-community edges* are those edges joining a pair of nodes
in different blocks of the partition.
Implementation note: this function creates an intermediate graph
that may require the same amount of memory as that of `G`.
"""
# Alternate implementation that does not require constructing a new
# graph object (but does require constructing an affiliation
# dictionary):
#
# aff = dict(chain.from_iterable(((v, block) for v in block)
# for block in partition))
# return sum(1 for u, v in G.edges() if aff[u] != aff[v])
#
MG = nx.MultiDiGraph if G.is_directed() else nx.MultiGraph
return nx.quotient_graph(G, partition, create_using=MG).size()
@nx._dispatch
def inter_community_non_edges(G, partition):
"""Returns the number of inter-community non-edges according to the
given partition of the nodes of `G`.
Parameters
----------
G : NetworkX graph.
partition : iterable of sets of nodes
This must be a partition of the nodes of `G`.
A *non-edge* is a pair of nodes (undirected if `G` is undirected)
that are not adjacent in `G`. The *inter-community non-edges* are
those non-edges on a pair of nodes in different blocks of the
partition.
Implementation note: this function creates two intermediate graphs,
which may require up to twice the amount of memory as required to
store `G`.
"""
# Alternate implementation that does not require constructing two
# new graph objects (but does require constructing an affiliation
# dictionary):
#
# aff = dict(chain.from_iterable(((v, block) for v in block)
# for block in partition))
# return sum(1 for u, v in nx.non_edges(G) if aff[u] != aff[v])
#
return inter_community_edges(nx.complement(G), partition)
@nx._dispatch(edge_attrs="weight")
def modularity(G, communities, weight="weight", resolution=1):
r"""Returns the modularity of the given partition of the graph.
Modularity is defined in [1]_ as
.. math::
Q = \frac{1}{2m} \sum_{ij} \left( A_{ij} - \gamma\frac{k_ik_j}{2m}\right)
\delta(c_i,c_j)
where $m$ is the number of edges (or sum of all edge weights as in [5]_),
$A$ is the adjacency matrix of `G`, $k_i$ is the (weighted) degree of $i$,
$\gamma$ is the resolution parameter, and $\delta(c_i, c_j)$ is 1 if $i$ and
$j$ are in the same community else 0.
According to [2]_ (and verified by some algebra) this can be reduced to
.. math::
Q = \sum_{c=1}^{n}
\left[ \frac{L_c}{m} - \gamma\left( \frac{k_c}{2m} \right) ^2 \right]
where the sum iterates over all communities $c$, $m$ is the number of edges,
$L_c$ is the number of intra-community links for community $c$,
$k_c$ is the sum of degrees of the nodes in community $c$,
and $\gamma$ is the resolution parameter.
The resolution parameter sets an arbitrary tradeoff between intra-group
edges and inter-group edges. More complex grouping patterns can be
discovered by analyzing the same network with multiple values of gamma
and then combining the results [3]_. That said, it is very common to
simply use gamma=1. More on the choice of gamma is in [4]_.
The second formula is the one actually used in calculation of the modularity.
For directed graphs the second formula replaces $k_c$ with $k^{in}_c k^{out}_c$.
Parameters
----------
G : NetworkX Graph
communities : list or iterable of set of nodes
These node sets must represent a partition of G's nodes.
weight : string or None, optional (default="weight")
The edge attribute that holds the numerical value used
as a weight. If None or an edge does not have that attribute,
then that edge has weight 1.
resolution : float (default=1)
If resolution is less than 1, modularity favors larger communities.
Greater than 1 favors smaller communities.
Returns
-------
Q : float
The modularity of the partition.
Raises
------
NotAPartition
If `communities` is not a partition of the nodes of `G`.
Examples
--------
>>> G = nx.barbell_graph(3, 0)
>>> nx.community.modularity(G, [{0, 1, 2}, {3, 4, 5}])
0.35714285714285715
>>> nx.community.modularity(G, nx.community.label_propagation_communities(G))
0.35714285714285715
References
----------
.. [1] M. E. J. Newman "Networks: An Introduction", page 224.
Oxford University Press, 2011.
.. [2] Clauset, Aaron, Mark EJ Newman, and Cristopher Moore.
"Finding community structure in very large networks."
Phys. Rev. E 70.6 (2004). <https://arxiv.org/abs/cond-mat/0408187>
.. [3] Reichardt and Bornholdt "Statistical Mechanics of Community Detection"
Phys. Rev. E 74, 016110, 2006. https://doi.org/10.1103/PhysRevE.74.016110
.. [4] M. E. J. Newman, "Equivalence between modularity optimization and
maximum likelihood methods for community detection"
Phys. Rev. E 94, 052315, 2016. https://doi.org/10.1103/PhysRevE.94.052315
.. [5] Blondel, V.D. et al. "Fast unfolding of communities in large
networks" J. Stat. Mech 10008, 1-12 (2008).
https://doi.org/10.1088/1742-5468/2008/10/P10008
"""
if not isinstance(communities, list):
communities = list(communities)
if not is_partition(G, communities):
raise NotAPartition(G, communities)
directed = G.is_directed()
if directed:
out_degree = dict(G.out_degree(weight=weight))
in_degree = dict(G.in_degree(weight=weight))
m = sum(out_degree.values())
norm = 1 / m**2
else:
out_degree = in_degree = dict(G.degree(weight=weight))
deg_sum = sum(out_degree.values())
m = deg_sum / 2
norm = 1 / deg_sum**2
def community_contribution(community):
comm = set(community)
L_c = sum(wt for u, v, wt in G.edges(comm, data=weight, default=1) if v in comm)
out_degree_sum = sum(out_degree[u] for u in comm)
in_degree_sum = sum(in_degree[u] for u in comm) if directed else out_degree_sum
return L_c / m - resolution * out_degree_sum * in_degree_sum * norm
return sum(map(community_contribution, communities))
@require_partition
@nx._dispatch
def partition_quality(G, partition):
"""Returns the coverage and performance of a partition of G.
The *coverage* of a partition is the ratio of the number of
intra-community edges to the total number of edges in the graph.
The *performance* of a partition is the number of
intra-community edges plus inter-community non-edges divided by the total
number of potential edges.
This algorithm has complexity $O(C^2 + L)$ where C is the number of communities and L is the number of links.
Parameters
----------
G : NetworkX graph
partition : sequence
Partition of the nodes of `G`, represented as a sequence of
sets of nodes (blocks). Each block of the partition represents a
community.
Returns
-------
(float, float)
The (coverage, performance) tuple of the partition, as defined above.
Raises
------
NetworkXError
If `partition` is not a valid partition of the nodes of `G`.
Notes
-----
If `G` is a multigraph;
- for coverage, the multiplicity of edges is counted
- for performance, the result is -1 (total number of possible edges is not defined)
References
----------
.. [1] Santo Fortunato.
"Community Detection in Graphs".
*Physical Reports*, Volume 486, Issue 3--5 pp. 75--174
<https://arxiv.org/abs/0906.0612>
"""
node_community = {}
for i, community in enumerate(partition):
for node in community:
node_community[node] = i
# `performance` is not defined for multigraphs
if not G.is_multigraph():
# Iterate over the communities, quadratic, to calculate `possible_inter_community_edges`
possible_inter_community_edges = sum(
len(p1) * len(p2) for p1, p2 in combinations(partition, 2)
)
if G.is_directed():
possible_inter_community_edges *= 2
else:
possible_inter_community_edges = 0
# Compute the number of edges in the complete graph -- `n` nodes,
# directed or undirected, depending on `G`
n = len(G)
total_pairs = n * (n - 1)
if not G.is_directed():
total_pairs //= 2
intra_community_edges = 0
inter_community_non_edges = possible_inter_community_edges
# Iterate over the links to count `intra_community_edges` and `inter_community_non_edges`
for e in G.edges():
if node_community[e[0]] == node_community[e[1]]:
intra_community_edges += 1
else:
inter_community_non_edges -= 1
coverage = intra_community_edges / len(G.edges)
if G.is_multigraph():
performance = -1.0
else:
performance = (intra_community_edges + inter_community_non_edges) / total_pairs
return coverage, performance
|