File size: 2,699 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
"""Attracting components."""
import networkx as nx
from networkx.utils.decorators import not_implemented_for

__all__ = [
    "number_attracting_components",
    "attracting_components",
    "is_attracting_component",
]


@not_implemented_for("undirected")
@nx._dispatch
def attracting_components(G):
    """Generates the attracting components in `G`.

    An attracting component in a directed graph `G` is a strongly connected
    component with the property that a random walker on the graph will never
    leave the component, once it enters the component.

    The nodes in attracting components can also be thought of as recurrent
    nodes.  If a random walker enters the attractor containing the node, then
    the node will be visited infinitely often.

    To obtain induced subgraphs on each component use:
    ``(G.subgraph(c).copy() for c in attracting_components(G))``

    Parameters
    ----------
    G : DiGraph, MultiDiGraph
        The graph to be analyzed.

    Returns
    -------
    attractors : generator of sets
        A generator of sets of nodes, one for each attracting component of G.

    Raises
    ------
    NetworkXNotImplemented
        If the input graph is undirected.

    See Also
    --------
    number_attracting_components
    is_attracting_component

    """
    scc = list(nx.strongly_connected_components(G))
    cG = nx.condensation(G, scc)
    for n in cG:
        if cG.out_degree(n) == 0:
            yield scc[n]


@not_implemented_for("undirected")
@nx._dispatch
def number_attracting_components(G):
    """Returns the number of attracting components in `G`.

    Parameters
    ----------
    G : DiGraph, MultiDiGraph
        The graph to be analyzed.

    Returns
    -------
    n : int
        The number of attracting components in G.

    Raises
    ------
    NetworkXNotImplemented
        If the input graph is undirected.

    See Also
    --------
    attracting_components
    is_attracting_component

    """
    return sum(1 for ac in attracting_components(G))


@not_implemented_for("undirected")
@nx._dispatch
def is_attracting_component(G):
    """Returns True if `G` consists of a single attracting component.

    Parameters
    ----------
    G : DiGraph, MultiDiGraph
        The graph to be analyzed.

    Returns
    -------
    attracting : bool
        True if `G` has a single attracting component. Otherwise, False.

    Raises
    ------
    NetworkXNotImplemented
        If the input graph is undirected.

    See Also
    --------
    attracting_components
    number_attracting_components

    """
    ac = list(attracting_components(G))
    if len(ac) == 1:
        return len(ac[0]) == len(G)
    return False