File size: 12,283 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import pytest

import networkx as nx
from networkx.utils import nodes_equal

from .test_graph import BaseAttrGraphTester, BaseGraphTester
from .test_graph import TestEdgeSubgraph as _TestGraphEdgeSubgraph
from .test_graph import TestGraph as _TestGraph


class BaseDiGraphTester(BaseGraphTester):
    def test_has_successor(self):
        G = self.K3
        assert G.has_successor(0, 1)
        assert not G.has_successor(0, -1)

    def test_successors(self):
        G = self.K3
        assert sorted(G.successors(0)) == [1, 2]
        with pytest.raises(nx.NetworkXError):
            G.successors(-1)

    def test_has_predecessor(self):
        G = self.K3
        assert G.has_predecessor(0, 1)
        assert not G.has_predecessor(0, -1)

    def test_predecessors(self):
        G = self.K3
        assert sorted(G.predecessors(0)) == [1, 2]
        with pytest.raises(nx.NetworkXError):
            G.predecessors(-1)

    def test_edges(self):
        G = self.K3
        assert sorted(G.edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
        assert sorted(G.edges(0)) == [(0, 1), (0, 2)]
        assert sorted(G.edges([0, 1])) == [(0, 1), (0, 2), (1, 0), (1, 2)]
        with pytest.raises(nx.NetworkXError):
            G.edges(-1)

    def test_out_edges(self):
        G = self.K3
        assert sorted(G.out_edges()) == [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
        assert sorted(G.out_edges(0)) == [(0, 1), (0, 2)]
        with pytest.raises(nx.NetworkXError):
            G.out_edges(-1)

    def test_out_edges_dir(self):
        G = self.P3
        assert sorted(G.out_edges()) == [(0, 1), (1, 2)]
        assert sorted(G.out_edges(0)) == [(0, 1)]
        assert sorted(G.out_edges(2)) == []

    def test_out_edges_data(self):
        G = nx.DiGraph([(0, 1, {"data": 0}), (1, 0, {})])
        assert sorted(G.out_edges(data=True)) == [(0, 1, {"data": 0}), (1, 0, {})]
        assert sorted(G.out_edges(0, data=True)) == [(0, 1, {"data": 0})]
        assert sorted(G.out_edges(data="data")) == [(0, 1, 0), (1, 0, None)]
        assert sorted(G.out_edges(0, data="data")) == [(0, 1, 0)]

    def test_in_edges_dir(self):
        G = self.P3
        assert sorted(G.in_edges()) == [(0, 1), (1, 2)]
        assert sorted(G.in_edges(0)) == []
        assert sorted(G.in_edges(2)) == [(1, 2)]

    def test_in_edges_data(self):
        G = nx.DiGraph([(0, 1, {"data": 0}), (1, 0, {})])
        assert sorted(G.in_edges(data=True)) == [(0, 1, {"data": 0}), (1, 0, {})]
        assert sorted(G.in_edges(1, data=True)) == [(0, 1, {"data": 0})]
        assert sorted(G.in_edges(data="data")) == [(0, 1, 0), (1, 0, None)]
        assert sorted(G.in_edges(1, data="data")) == [(0, 1, 0)]

    def test_degree(self):
        G = self.K3
        assert sorted(G.degree()) == [(0, 4), (1, 4), (2, 4)]
        assert dict(G.degree()) == {0: 4, 1: 4, 2: 4}
        assert G.degree(0) == 4
        assert list(G.degree(iter([0]))) == [(0, 4)]  # run through iterator

    def test_in_degree(self):
        G = self.K3
        assert sorted(G.in_degree()) == [(0, 2), (1, 2), (2, 2)]
        assert dict(G.in_degree()) == {0: 2, 1: 2, 2: 2}
        assert G.in_degree(0) == 2
        assert list(G.in_degree(iter([0]))) == [(0, 2)]  # run through iterator

    def test_out_degree(self):
        G = self.K3
        assert sorted(G.out_degree()) == [(0, 2), (1, 2), (2, 2)]
        assert dict(G.out_degree()) == {0: 2, 1: 2, 2: 2}
        assert G.out_degree(0) == 2
        assert list(G.out_degree(iter([0]))) == [(0, 2)]

    def test_size(self):
        G = self.K3
        assert G.size() == 6
        assert G.number_of_edges() == 6

    def test_to_undirected_reciprocal(self):
        G = self.Graph()
        G.add_edge(1, 2)
        assert G.to_undirected().has_edge(1, 2)
        assert not G.to_undirected(reciprocal=True).has_edge(1, 2)
        G.add_edge(2, 1)
        assert G.to_undirected(reciprocal=True).has_edge(1, 2)

    def test_reverse_copy(self):
        G = nx.DiGraph([(0, 1), (1, 2)])
        R = G.reverse()
        assert sorted(R.edges()) == [(1, 0), (2, 1)]
        R.remove_edge(1, 0)
        assert sorted(R.edges()) == [(2, 1)]
        assert sorted(G.edges()) == [(0, 1), (1, 2)]

    def test_reverse_nocopy(self):
        G = nx.DiGraph([(0, 1), (1, 2)])
        R = G.reverse(copy=False)
        assert sorted(R.edges()) == [(1, 0), (2, 1)]
        with pytest.raises(nx.NetworkXError):
            R.remove_edge(1, 0)

    def test_reverse_hashable(self):
        class Foo:
            pass

        x = Foo()
        y = Foo()
        G = nx.DiGraph()
        G.add_edge(x, y)
        assert nodes_equal(G.nodes(), G.reverse().nodes())
        assert [(y, x)] == list(G.reverse().edges())

    def test_di_cache_reset(self):
        G = self.K3.copy()
        old_succ = G.succ
        assert id(G.succ) == id(old_succ)
        old_adj = G.adj
        assert id(G.adj) == id(old_adj)

        G._succ = {}
        assert id(G.succ) != id(old_succ)
        assert id(G.adj) != id(old_adj)

        old_pred = G.pred
        assert id(G.pred) == id(old_pred)
        G._pred = {}
        assert id(G.pred) != id(old_pred)

    def test_di_attributes_cached(self):
        G = self.K3.copy()
        assert id(G.in_edges) == id(G.in_edges)
        assert id(G.out_edges) == id(G.out_edges)
        assert id(G.in_degree) == id(G.in_degree)
        assert id(G.out_degree) == id(G.out_degree)
        assert id(G.succ) == id(G.succ)
        assert id(G.pred) == id(G.pred)


class BaseAttrDiGraphTester(BaseDiGraphTester, BaseAttrGraphTester):
    def test_edges_data(self):
        G = self.K3
        all_edges = [
            (0, 1, {}),
            (0, 2, {}),
            (1, 0, {}),
            (1, 2, {}),
            (2, 0, {}),
            (2, 1, {}),
        ]
        assert sorted(G.edges(data=True)) == all_edges
        assert sorted(G.edges(0, data=True)) == all_edges[:2]
        assert sorted(G.edges([0, 1], data=True)) == all_edges[:4]
        with pytest.raises(nx.NetworkXError):
            G.edges(-1, True)

    def test_in_degree_weighted(self):
        G = self.K3.copy()
        G.add_edge(0, 1, weight=0.3, other=1.2)
        assert sorted(G.in_degree(weight="weight")) == [(0, 2), (1, 1.3), (2, 2)]
        assert dict(G.in_degree(weight="weight")) == {0: 2, 1: 1.3, 2: 2}
        assert G.in_degree(1, weight="weight") == 1.3
        assert sorted(G.in_degree(weight="other")) == [(0, 2), (1, 2.2), (2, 2)]
        assert dict(G.in_degree(weight="other")) == {0: 2, 1: 2.2, 2: 2}
        assert G.in_degree(1, weight="other") == 2.2
        assert list(G.in_degree(iter([1]), weight="other")) == [(1, 2.2)]

    def test_out_degree_weighted(self):
        G = self.K3.copy()
        G.add_edge(0, 1, weight=0.3, other=1.2)
        assert sorted(G.out_degree(weight="weight")) == [(0, 1.3), (1, 2), (2, 2)]
        assert dict(G.out_degree(weight="weight")) == {0: 1.3, 1: 2, 2: 2}
        assert G.out_degree(0, weight="weight") == 1.3
        assert sorted(G.out_degree(weight="other")) == [(0, 2.2), (1, 2), (2, 2)]
        assert dict(G.out_degree(weight="other")) == {0: 2.2, 1: 2, 2: 2}
        assert G.out_degree(0, weight="other") == 2.2
        assert list(G.out_degree(iter([0]), weight="other")) == [(0, 2.2)]


class TestDiGraph(BaseAttrDiGraphTester, _TestGraph):
    """Tests specific to dict-of-dict-of-dict digraph data structure"""

    def setup_method(self):
        self.Graph = nx.DiGraph
        # build dict-of-dict-of-dict K3
        ed1, ed2, ed3, ed4, ed5, ed6 = ({}, {}, {}, {}, {}, {})
        self.k3adj = {0: {1: ed1, 2: ed2}, 1: {0: ed3, 2: ed4}, 2: {0: ed5, 1: ed6}}
        self.k3edges = [(0, 1), (0, 2), (1, 2)]
        self.k3nodes = [0, 1, 2]
        self.K3 = self.Graph()
        self.K3._succ = self.k3adj  # K3._adj is synced with K3._succ
        self.K3._pred = {0: {1: ed3, 2: ed5}, 1: {0: ed1, 2: ed6}, 2: {0: ed2, 1: ed4}}
        self.K3._node = {}
        self.K3._node[0] = {}
        self.K3._node[1] = {}
        self.K3._node[2] = {}

        ed1, ed2 = ({}, {})
        self.P3 = self.Graph()
        self.P3._succ = {0: {1: ed1}, 1: {2: ed2}, 2: {}}
        self.P3._pred = {0: {}, 1: {0: ed1}, 2: {1: ed2}}
        # P3._adj is synced with P3._succ
        self.P3._node = {}
        self.P3._node[0] = {}
        self.P3._node[1] = {}
        self.P3._node[2] = {}

    def test_data_input(self):
        G = self.Graph({1: [2], 2: [1]}, name="test")
        assert G.name == "test"
        assert sorted(G.adj.items()) == [(1, {2: {}}), (2, {1: {}})]
        assert sorted(G.succ.items()) == [(1, {2: {}}), (2, {1: {}})]
        assert sorted(G.pred.items()) == [(1, {2: {}}), (2, {1: {}})]

    def test_add_edge(self):
        G = self.Graph()
        G.add_edge(0, 1)
        assert G.adj == {0: {1: {}}, 1: {}}
        assert G.succ == {0: {1: {}}, 1: {}}
        assert G.pred == {0: {}, 1: {0: {}}}
        G = self.Graph()
        G.add_edge(*(0, 1))
        assert G.adj == {0: {1: {}}, 1: {}}
        assert G.succ == {0: {1: {}}, 1: {}}
        assert G.pred == {0: {}, 1: {0: {}}}
        with pytest.raises(ValueError, match="None cannot be a node"):
            G.add_edge(None, 3)

    def test_add_edges_from(self):
        G = self.Graph()
        G.add_edges_from([(0, 1), (0, 2, {"data": 3})], data=2)
        assert G.adj == {0: {1: {"data": 2}, 2: {"data": 3}}, 1: {}, 2: {}}
        assert G.succ == {0: {1: {"data": 2}, 2: {"data": 3}}, 1: {}, 2: {}}
        assert G.pred == {0: {}, 1: {0: {"data": 2}}, 2: {0: {"data": 3}}}

        with pytest.raises(nx.NetworkXError):
            G.add_edges_from([(0,)])  # too few in tuple
        with pytest.raises(nx.NetworkXError):
            G.add_edges_from([(0, 1, 2, 3)])  # too many in tuple
        with pytest.raises(TypeError):
            G.add_edges_from([0])  # not a tuple
        with pytest.raises(ValueError, match="None cannot be a node"):
            G.add_edges_from([(None, 3), (3, 2)])

    def test_remove_edge(self):
        G = self.K3.copy()
        G.remove_edge(0, 1)
        assert G.succ == {0: {2: {}}, 1: {0: {}, 2: {}}, 2: {0: {}, 1: {}}}
        assert G.pred == {0: {1: {}, 2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}}
        with pytest.raises(nx.NetworkXError):
            G.remove_edge(-1, 0)

    def test_remove_edges_from(self):
        G = self.K3.copy()
        G.remove_edges_from([(0, 1)])
        assert G.succ == {0: {2: {}}, 1: {0: {}, 2: {}}, 2: {0: {}, 1: {}}}
        assert G.pred == {0: {1: {}, 2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}}
        G.remove_edges_from([(0, 0)])  # silent fail

    def test_clear(self):
        G = self.K3
        G.graph["name"] = "K3"
        G.clear()
        assert list(G.nodes) == []
        assert G.succ == {}
        assert G.pred == {}
        assert G.graph == {}

    def test_clear_edges(self):
        G = self.K3
        G.graph["name"] = "K3"
        nodes = list(G.nodes)
        G.clear_edges()
        assert list(G.nodes) == nodes
        expected = {0: {}, 1: {}, 2: {}}
        assert G.succ == expected
        assert G.pred == expected
        assert list(G.edges) == []
        assert G.graph["name"] == "K3"


class TestEdgeSubgraph(_TestGraphEdgeSubgraph):
    """Unit tests for the :meth:`DiGraph.edge_subgraph` method."""

    def setup_method(self):
        # Create a doubly-linked path graph on five nodes.
        G = nx.DiGraph(nx.path_graph(5))
        # Add some node, edge, and graph attributes.
        for i in range(5):
            G.nodes[i]["name"] = f"node{i}"
        G.edges[0, 1]["name"] = "edge01"
        G.edges[3, 4]["name"] = "edge34"
        G.graph["name"] = "graph"
        # Get the subgraph induced by the first and last edges.
        self.G = G
        self.H = G.edge_subgraph([(0, 1), (3, 4)])

    def test_pred_succ(self):
        """Test that nodes are added to predecessors and successors.

        For more information, see GitHub issue #2370.

        """
        G = nx.DiGraph()
        G.add_edge(0, 1)
        H = G.edge_subgraph([(0, 1)])
        assert list(H.predecessors(0)) == []
        assert list(H.successors(0)) == [1]
        assert list(H.predecessors(1)) == [0]
        assert list(H.successors(1)) == []