Spaces:
Sleeping
Sleeping
File size: 17,841 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 |
"""Unit tests for layout functions."""
import pytest
import networkx as nx
np = pytest.importorskip("numpy")
pytest.importorskip("scipy")
class TestLayout:
@classmethod
def setup_class(cls):
cls.Gi = nx.grid_2d_graph(5, 5)
cls.Gs = nx.Graph()
nx.add_path(cls.Gs, "abcdef")
cls.bigG = nx.grid_2d_graph(25, 25) # > 500 nodes for sparse
def test_spring_fixed_without_pos(self):
G = nx.path_graph(4)
pytest.raises(ValueError, nx.spring_layout, G, fixed=[0])
pos = {0: (1, 1), 2: (0, 0)}
pytest.raises(ValueError, nx.spring_layout, G, fixed=[0, 1], pos=pos)
nx.spring_layout(G, fixed=[0, 2], pos=pos) # No ValueError
def test_spring_init_pos(self):
# Tests GH #2448
import math
G = nx.Graph()
G.add_edges_from([(0, 1), (1, 2), (2, 0), (2, 3)])
init_pos = {0: (0.0, 0.0)}
fixed_pos = [0]
pos = nx.fruchterman_reingold_layout(G, pos=init_pos, fixed=fixed_pos)
has_nan = any(math.isnan(c) for coords in pos.values() for c in coords)
assert not has_nan, "values should not be nan"
def test_smoke_empty_graph(self):
G = []
nx.random_layout(G)
nx.circular_layout(G)
nx.planar_layout(G)
nx.spring_layout(G)
nx.fruchterman_reingold_layout(G)
nx.spectral_layout(G)
nx.shell_layout(G)
nx.bipartite_layout(G, G)
nx.spiral_layout(G)
nx.multipartite_layout(G)
nx.kamada_kawai_layout(G)
def test_smoke_int(self):
G = self.Gi
nx.random_layout(G)
nx.circular_layout(G)
nx.planar_layout(G)
nx.spring_layout(G)
nx.fruchterman_reingold_layout(G)
nx.fruchterman_reingold_layout(self.bigG)
nx.spectral_layout(G)
nx.spectral_layout(G.to_directed())
nx.spectral_layout(self.bigG)
nx.spectral_layout(self.bigG.to_directed())
nx.shell_layout(G)
nx.spiral_layout(G)
nx.kamada_kawai_layout(G)
nx.kamada_kawai_layout(G, dim=1)
nx.kamada_kawai_layout(G, dim=3)
nx.arf_layout(G)
def test_smoke_string(self):
G = self.Gs
nx.random_layout(G)
nx.circular_layout(G)
nx.planar_layout(G)
nx.spring_layout(G)
nx.fruchterman_reingold_layout(G)
nx.spectral_layout(G)
nx.shell_layout(G)
nx.spiral_layout(G)
nx.kamada_kawai_layout(G)
nx.kamada_kawai_layout(G, dim=1)
nx.kamada_kawai_layout(G, dim=3)
nx.arf_layout(G)
def check_scale_and_center(self, pos, scale, center):
center = np.array(center)
low = center - scale
hi = center + scale
vpos = np.array(list(pos.values()))
length = vpos.max(0) - vpos.min(0)
assert (length <= 2 * scale).all()
assert (vpos >= low).all()
assert (vpos <= hi).all()
def test_scale_and_center_arg(self):
sc = self.check_scale_and_center
c = (4, 5)
G = nx.complete_graph(9)
G.add_node(9)
sc(nx.random_layout(G, center=c), scale=0.5, center=(4.5, 5.5))
# rest can have 2*scale length: [-scale, scale]
sc(nx.spring_layout(G, scale=2, center=c), scale=2, center=c)
sc(nx.spectral_layout(G, scale=2, center=c), scale=2, center=c)
sc(nx.circular_layout(G, scale=2, center=c), scale=2, center=c)
sc(nx.shell_layout(G, scale=2, center=c), scale=2, center=c)
sc(nx.spiral_layout(G, scale=2, center=c), scale=2, center=c)
sc(nx.kamada_kawai_layout(G, scale=2, center=c), scale=2, center=c)
c = (2, 3, 5)
sc(nx.kamada_kawai_layout(G, dim=3, scale=2, center=c), scale=2, center=c)
def test_planar_layout_non_planar_input(self):
G = nx.complete_graph(9)
pytest.raises(nx.NetworkXException, nx.planar_layout, G)
def test_smoke_planar_layout_embedding_input(self):
embedding = nx.PlanarEmbedding()
embedding.set_data({0: [1, 2], 1: [0, 2], 2: [0, 1]})
nx.planar_layout(embedding)
def test_default_scale_and_center(self):
sc = self.check_scale_and_center
c = (0, 0)
G = nx.complete_graph(9)
G.add_node(9)
sc(nx.random_layout(G), scale=0.5, center=(0.5, 0.5))
sc(nx.spring_layout(G), scale=1, center=c)
sc(nx.spectral_layout(G), scale=1, center=c)
sc(nx.circular_layout(G), scale=1, center=c)
sc(nx.shell_layout(G), scale=1, center=c)
sc(nx.spiral_layout(G), scale=1, center=c)
sc(nx.kamada_kawai_layout(G), scale=1, center=c)
c = (0, 0, 0)
sc(nx.kamada_kawai_layout(G, dim=3), scale=1, center=c)
def test_circular_planar_and_shell_dim_error(self):
G = nx.path_graph(4)
pytest.raises(ValueError, nx.circular_layout, G, dim=1)
pytest.raises(ValueError, nx.shell_layout, G, dim=1)
pytest.raises(ValueError, nx.shell_layout, G, dim=3)
pytest.raises(ValueError, nx.planar_layout, G, dim=1)
pytest.raises(ValueError, nx.planar_layout, G, dim=3)
def test_adjacency_interface_numpy(self):
A = nx.to_numpy_array(self.Gs)
pos = nx.drawing.layout._fruchterman_reingold(A)
assert pos.shape == (6, 2)
pos = nx.drawing.layout._fruchterman_reingold(A, dim=3)
assert pos.shape == (6, 3)
pos = nx.drawing.layout._sparse_fruchterman_reingold(A)
assert pos.shape == (6, 2)
def test_adjacency_interface_scipy(self):
A = nx.to_scipy_sparse_array(self.Gs, dtype="d")
pos = nx.drawing.layout._sparse_fruchterman_reingold(A)
assert pos.shape == (6, 2)
pos = nx.drawing.layout._sparse_spectral(A)
assert pos.shape == (6, 2)
pos = nx.drawing.layout._sparse_fruchterman_reingold(A, dim=3)
assert pos.shape == (6, 3)
def test_single_nodes(self):
G = nx.path_graph(1)
vpos = nx.shell_layout(G)
assert not vpos[0].any()
G = nx.path_graph(4)
vpos = nx.shell_layout(G, [[0], [1, 2], [3]])
assert not vpos[0].any()
assert vpos[3].any() # ensure node 3 not at origin (#3188)
assert np.linalg.norm(vpos[3]) <= 1 # ensure node 3 fits (#3753)
vpos = nx.shell_layout(G, [[0], [1, 2], [3]], rotate=0)
assert np.linalg.norm(vpos[3]) <= 1 # ensure node 3 fits (#3753)
def test_smoke_initial_pos_fruchterman_reingold(self):
pos = nx.circular_layout(self.Gi)
npos = nx.fruchterman_reingold_layout(self.Gi, pos=pos)
def test_smoke_initial_pos_arf(self):
pos = nx.circular_layout(self.Gi)
npos = nx.arf_layout(self.Gi, pos=pos)
def test_fixed_node_fruchterman_reingold(self):
# Dense version (numpy based)
pos = nx.circular_layout(self.Gi)
npos = nx.spring_layout(self.Gi, pos=pos, fixed=[(0, 0)])
assert tuple(pos[(0, 0)]) == tuple(npos[(0, 0)])
# Sparse version (scipy based)
pos = nx.circular_layout(self.bigG)
npos = nx.spring_layout(self.bigG, pos=pos, fixed=[(0, 0)])
for axis in range(2):
assert pos[(0, 0)][axis] == pytest.approx(npos[(0, 0)][axis], abs=1e-7)
def test_center_parameter(self):
G = nx.path_graph(1)
nx.random_layout(G, center=(1, 1))
vpos = nx.circular_layout(G, center=(1, 1))
assert tuple(vpos[0]) == (1, 1)
vpos = nx.planar_layout(G, center=(1, 1))
assert tuple(vpos[0]) == (1, 1)
vpos = nx.spring_layout(G, center=(1, 1))
assert tuple(vpos[0]) == (1, 1)
vpos = nx.fruchterman_reingold_layout(G, center=(1, 1))
assert tuple(vpos[0]) == (1, 1)
vpos = nx.spectral_layout(G, center=(1, 1))
assert tuple(vpos[0]) == (1, 1)
vpos = nx.shell_layout(G, center=(1, 1))
assert tuple(vpos[0]) == (1, 1)
vpos = nx.spiral_layout(G, center=(1, 1))
assert tuple(vpos[0]) == (1, 1)
def test_center_wrong_dimensions(self):
G = nx.path_graph(1)
assert id(nx.spring_layout) == id(nx.fruchterman_reingold_layout)
pytest.raises(ValueError, nx.random_layout, G, center=(1, 1, 1))
pytest.raises(ValueError, nx.circular_layout, G, center=(1, 1, 1))
pytest.raises(ValueError, nx.planar_layout, G, center=(1, 1, 1))
pytest.raises(ValueError, nx.spring_layout, G, center=(1, 1, 1))
pytest.raises(ValueError, nx.spring_layout, G, dim=3, center=(1, 1))
pytest.raises(ValueError, nx.spectral_layout, G, center=(1, 1, 1))
pytest.raises(ValueError, nx.spectral_layout, G, dim=3, center=(1, 1))
pytest.raises(ValueError, nx.shell_layout, G, center=(1, 1, 1))
pytest.raises(ValueError, nx.spiral_layout, G, center=(1, 1, 1))
pytest.raises(ValueError, nx.kamada_kawai_layout, G, center=(1, 1, 1))
def test_empty_graph(self):
G = nx.empty_graph()
vpos = nx.random_layout(G, center=(1, 1))
assert vpos == {}
vpos = nx.circular_layout(G, center=(1, 1))
assert vpos == {}
vpos = nx.planar_layout(G, center=(1, 1))
assert vpos == {}
vpos = nx.bipartite_layout(G, G)
assert vpos == {}
vpos = nx.spring_layout(G, center=(1, 1))
assert vpos == {}
vpos = nx.fruchterman_reingold_layout(G, center=(1, 1))
assert vpos == {}
vpos = nx.spectral_layout(G, center=(1, 1))
assert vpos == {}
vpos = nx.shell_layout(G, center=(1, 1))
assert vpos == {}
vpos = nx.spiral_layout(G, center=(1, 1))
assert vpos == {}
vpos = nx.multipartite_layout(G, center=(1, 1))
assert vpos == {}
vpos = nx.kamada_kawai_layout(G, center=(1, 1))
assert vpos == {}
vpos = nx.arf_layout(G)
assert vpos == {}
def test_bipartite_layout(self):
G = nx.complete_bipartite_graph(3, 5)
top, bottom = nx.bipartite.sets(G)
vpos = nx.bipartite_layout(G, top)
assert len(vpos) == len(G)
top_x = vpos[list(top)[0]][0]
bottom_x = vpos[list(bottom)[0]][0]
for node in top:
assert vpos[node][0] == top_x
for node in bottom:
assert vpos[node][0] == bottom_x
vpos = nx.bipartite_layout(
G, top, align="horizontal", center=(2, 2), scale=2, aspect_ratio=1
)
assert len(vpos) == len(G)
top_y = vpos[list(top)[0]][1]
bottom_y = vpos[list(bottom)[0]][1]
for node in top:
assert vpos[node][1] == top_y
for node in bottom:
assert vpos[node][1] == bottom_y
pytest.raises(ValueError, nx.bipartite_layout, G, top, align="foo")
def test_multipartite_layout(self):
sizes = (0, 5, 7, 2, 8)
G = nx.complete_multipartite_graph(*sizes)
vpos = nx.multipartite_layout(G)
assert len(vpos) == len(G)
start = 0
for n in sizes:
end = start + n
assert all(vpos[start][0] == vpos[i][0] for i in range(start + 1, end))
start += n
vpos = nx.multipartite_layout(G, align="horizontal", scale=2, center=(2, 2))
assert len(vpos) == len(G)
start = 0
for n in sizes:
end = start + n
assert all(vpos[start][1] == vpos[i][1] for i in range(start + 1, end))
start += n
pytest.raises(ValueError, nx.multipartite_layout, G, align="foo")
def test_kamada_kawai_costfn_1d(self):
costfn = nx.drawing.layout._kamada_kawai_costfn
pos = np.array([4.0, 7.0])
invdist = 1 / np.array([[0.1, 2.0], [2.0, 0.3]])
cost, grad = costfn(pos, np, invdist, meanweight=0, dim=1)
assert cost == pytest.approx(((3 / 2.0 - 1) ** 2), abs=1e-7)
assert grad[0] == pytest.approx((-0.5), abs=1e-7)
assert grad[1] == pytest.approx(0.5, abs=1e-7)
def check_kamada_kawai_costfn(self, pos, invdist, meanwt, dim):
costfn = nx.drawing.layout._kamada_kawai_costfn
cost, grad = costfn(pos.ravel(), np, invdist, meanweight=meanwt, dim=dim)
expected_cost = 0.5 * meanwt * np.sum(np.sum(pos, axis=0) ** 2)
for i in range(pos.shape[0]):
for j in range(i + 1, pos.shape[0]):
diff = np.linalg.norm(pos[i] - pos[j])
expected_cost += (diff * invdist[i][j] - 1.0) ** 2
assert cost == pytest.approx(expected_cost, abs=1e-7)
dx = 1e-4
for nd in range(pos.shape[0]):
for dm in range(pos.shape[1]):
idx = nd * pos.shape[1] + dm
ps = pos.flatten()
ps[idx] += dx
cplus = costfn(ps, np, invdist, meanweight=meanwt, dim=pos.shape[1])[0]
ps[idx] -= 2 * dx
cminus = costfn(ps, np, invdist, meanweight=meanwt, dim=pos.shape[1])[0]
assert grad[idx] == pytest.approx((cplus - cminus) / (2 * dx), abs=1e-5)
def test_kamada_kawai_costfn(self):
invdist = 1 / np.array([[0.1, 2.1, 1.7], [2.1, 0.2, 0.6], [1.7, 0.6, 0.3]])
meanwt = 0.3
# 2d
pos = np.array([[1.3, -3.2], [2.7, -0.3], [5.1, 2.5]])
self.check_kamada_kawai_costfn(pos, invdist, meanwt, 2)
# 3d
pos = np.array([[0.9, 8.6, -8.7], [-10, -0.5, -7.1], [9.1, -8.1, 1.6]])
self.check_kamada_kawai_costfn(pos, invdist, meanwt, 3)
def test_spiral_layout(self):
G = self.Gs
# a lower value of resolution should result in a more compact layout
# intuitively, the total distance from the start and end nodes
# via each node in between (transiting through each) will be less,
# assuming rescaling does not occur on the computed node positions
pos_standard = np.array(list(nx.spiral_layout(G, resolution=0.35).values()))
pos_tighter = np.array(list(nx.spiral_layout(G, resolution=0.34).values()))
distances = np.linalg.norm(pos_standard[:-1] - pos_standard[1:], axis=1)
distances_tighter = np.linalg.norm(pos_tighter[:-1] - pos_tighter[1:], axis=1)
assert sum(distances) > sum(distances_tighter)
# return near-equidistant points after the first value if set to true
pos_equidistant = np.array(list(nx.spiral_layout(G, equidistant=True).values()))
distances_equidistant = np.linalg.norm(
pos_equidistant[:-1] - pos_equidistant[1:], axis=1
)
assert np.allclose(
distances_equidistant[1:], distances_equidistant[-1], atol=0.01
)
def test_spiral_layout_equidistant(self):
G = nx.path_graph(10)
pos = nx.spiral_layout(G, equidistant=True)
# Extract individual node positions as an array
p = np.array(list(pos.values()))
# Elementwise-distance between node positions
dist = np.linalg.norm(p[1:] - p[:-1], axis=1)
assert np.allclose(np.diff(dist), 0, atol=1e-3)
def test_rescale_layout_dict(self):
G = nx.empty_graph()
vpos = nx.random_layout(G, center=(1, 1))
assert nx.rescale_layout_dict(vpos) == {}
G = nx.empty_graph(2)
vpos = {0: (0.0, 0.0), 1: (1.0, 1.0)}
s_vpos = nx.rescale_layout_dict(vpos)
assert np.linalg.norm([sum(x) for x in zip(*s_vpos.values())]) < 1e-6
G = nx.empty_graph(3)
vpos = {0: (0, 0), 1: (1, 1), 2: (0.5, 0.5)}
s_vpos = nx.rescale_layout_dict(vpos)
expectation = {
0: np.array((-1, -1)),
1: np.array((1, 1)),
2: np.array((0, 0)),
}
for k, v in expectation.items():
assert (s_vpos[k] == v).all()
s_vpos = nx.rescale_layout_dict(vpos, scale=2)
expectation = {
0: np.array((-2, -2)),
1: np.array((2, 2)),
2: np.array((0, 0)),
}
for k, v in expectation.items():
assert (s_vpos[k] == v).all()
def test_arf_layout_partial_input_test(self):
"""
Checks whether partial pos input still returns a proper position.
"""
G = self.Gs
node = nx.utils.arbitrary_element(G)
pos = nx.circular_layout(G)
del pos[node]
pos = nx.arf_layout(G, pos=pos)
assert len(pos) == len(G)
def test_arf_layout_negative_a_check(self):
"""
Checks input parameters correctly raises errors. For example, `a` should be larger than 1
"""
G = self.Gs
pytest.raises(ValueError, nx.arf_layout, G=G, a=-1)
def test_multipartite_layout_nonnumeric_partition_labels():
"""See gh-5123."""
G = nx.Graph()
G.add_node(0, subset="s0")
G.add_node(1, subset="s0")
G.add_node(2, subset="s1")
G.add_node(3, subset="s1")
G.add_edges_from([(0, 2), (0, 3), (1, 2)])
pos = nx.multipartite_layout(G)
assert len(pos) == len(G)
def test_multipartite_layout_layer_order():
"""Return the layers in sorted order if the layers of the multipartite
graph are sortable. See gh-5691"""
G = nx.Graph()
for node, layer in zip(("a", "b", "c", "d", "e"), (2, 3, 1, 2, 4)):
G.add_node(node, subset=layer)
# Horizontal alignment, therefore y-coord determines layers
pos = nx.multipartite_layout(G, align="horizontal")
# Nodes "a" and "d" are in the same layer
assert pos["a"][-1] == pos["d"][-1]
# positions should be sorted according to layer
assert pos["c"][-1] < pos["a"][-1] < pos["b"][-1] < pos["e"][-1]
# Make sure that multipartite_layout still works when layers are not sortable
G.nodes["a"]["subset"] = "layer_0" # Can't sort mixed strs/ints
pos_nosort = nx.multipartite_layout(G) # smoke test: this should not raise
assert pos_nosort.keys() == pos.keys()
|