File size: 17,841 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
"""Unit tests for layout functions."""
import pytest

import networkx as nx

np = pytest.importorskip("numpy")
pytest.importorskip("scipy")


class TestLayout:
    @classmethod
    def setup_class(cls):
        cls.Gi = nx.grid_2d_graph(5, 5)
        cls.Gs = nx.Graph()
        nx.add_path(cls.Gs, "abcdef")
        cls.bigG = nx.grid_2d_graph(25, 25)  # > 500 nodes for sparse

    def test_spring_fixed_without_pos(self):
        G = nx.path_graph(4)
        pytest.raises(ValueError, nx.spring_layout, G, fixed=[0])
        pos = {0: (1, 1), 2: (0, 0)}
        pytest.raises(ValueError, nx.spring_layout, G, fixed=[0, 1], pos=pos)
        nx.spring_layout(G, fixed=[0, 2], pos=pos)  # No ValueError

    def test_spring_init_pos(self):
        # Tests GH #2448
        import math

        G = nx.Graph()
        G.add_edges_from([(0, 1), (1, 2), (2, 0), (2, 3)])

        init_pos = {0: (0.0, 0.0)}
        fixed_pos = [0]
        pos = nx.fruchterman_reingold_layout(G, pos=init_pos, fixed=fixed_pos)
        has_nan = any(math.isnan(c) for coords in pos.values() for c in coords)
        assert not has_nan, "values should not be nan"

    def test_smoke_empty_graph(self):
        G = []
        nx.random_layout(G)
        nx.circular_layout(G)
        nx.planar_layout(G)
        nx.spring_layout(G)
        nx.fruchterman_reingold_layout(G)
        nx.spectral_layout(G)
        nx.shell_layout(G)
        nx.bipartite_layout(G, G)
        nx.spiral_layout(G)
        nx.multipartite_layout(G)
        nx.kamada_kawai_layout(G)

    def test_smoke_int(self):
        G = self.Gi
        nx.random_layout(G)
        nx.circular_layout(G)
        nx.planar_layout(G)
        nx.spring_layout(G)
        nx.fruchterman_reingold_layout(G)
        nx.fruchterman_reingold_layout(self.bigG)
        nx.spectral_layout(G)
        nx.spectral_layout(G.to_directed())
        nx.spectral_layout(self.bigG)
        nx.spectral_layout(self.bigG.to_directed())
        nx.shell_layout(G)
        nx.spiral_layout(G)
        nx.kamada_kawai_layout(G)
        nx.kamada_kawai_layout(G, dim=1)
        nx.kamada_kawai_layout(G, dim=3)
        nx.arf_layout(G)

    def test_smoke_string(self):
        G = self.Gs
        nx.random_layout(G)
        nx.circular_layout(G)
        nx.planar_layout(G)
        nx.spring_layout(G)
        nx.fruchterman_reingold_layout(G)
        nx.spectral_layout(G)
        nx.shell_layout(G)
        nx.spiral_layout(G)
        nx.kamada_kawai_layout(G)
        nx.kamada_kawai_layout(G, dim=1)
        nx.kamada_kawai_layout(G, dim=3)
        nx.arf_layout(G)

    def check_scale_and_center(self, pos, scale, center):
        center = np.array(center)
        low = center - scale
        hi = center + scale
        vpos = np.array(list(pos.values()))
        length = vpos.max(0) - vpos.min(0)
        assert (length <= 2 * scale).all()
        assert (vpos >= low).all()
        assert (vpos <= hi).all()

    def test_scale_and_center_arg(self):
        sc = self.check_scale_and_center
        c = (4, 5)
        G = nx.complete_graph(9)
        G.add_node(9)
        sc(nx.random_layout(G, center=c), scale=0.5, center=(4.5, 5.5))
        # rest can have 2*scale length: [-scale, scale]
        sc(nx.spring_layout(G, scale=2, center=c), scale=2, center=c)
        sc(nx.spectral_layout(G, scale=2, center=c), scale=2, center=c)
        sc(nx.circular_layout(G, scale=2, center=c), scale=2, center=c)
        sc(nx.shell_layout(G, scale=2, center=c), scale=2, center=c)
        sc(nx.spiral_layout(G, scale=2, center=c), scale=2, center=c)
        sc(nx.kamada_kawai_layout(G, scale=2, center=c), scale=2, center=c)

        c = (2, 3, 5)
        sc(nx.kamada_kawai_layout(G, dim=3, scale=2, center=c), scale=2, center=c)

    def test_planar_layout_non_planar_input(self):
        G = nx.complete_graph(9)
        pytest.raises(nx.NetworkXException, nx.planar_layout, G)

    def test_smoke_planar_layout_embedding_input(self):
        embedding = nx.PlanarEmbedding()
        embedding.set_data({0: [1, 2], 1: [0, 2], 2: [0, 1]})
        nx.planar_layout(embedding)

    def test_default_scale_and_center(self):
        sc = self.check_scale_and_center
        c = (0, 0)
        G = nx.complete_graph(9)
        G.add_node(9)
        sc(nx.random_layout(G), scale=0.5, center=(0.5, 0.5))
        sc(nx.spring_layout(G), scale=1, center=c)
        sc(nx.spectral_layout(G), scale=1, center=c)
        sc(nx.circular_layout(G), scale=1, center=c)
        sc(nx.shell_layout(G), scale=1, center=c)
        sc(nx.spiral_layout(G), scale=1, center=c)
        sc(nx.kamada_kawai_layout(G), scale=1, center=c)

        c = (0, 0, 0)
        sc(nx.kamada_kawai_layout(G, dim=3), scale=1, center=c)

    def test_circular_planar_and_shell_dim_error(self):
        G = nx.path_graph(4)
        pytest.raises(ValueError, nx.circular_layout, G, dim=1)
        pytest.raises(ValueError, nx.shell_layout, G, dim=1)
        pytest.raises(ValueError, nx.shell_layout, G, dim=3)
        pytest.raises(ValueError, nx.planar_layout, G, dim=1)
        pytest.raises(ValueError, nx.planar_layout, G, dim=3)

    def test_adjacency_interface_numpy(self):
        A = nx.to_numpy_array(self.Gs)
        pos = nx.drawing.layout._fruchterman_reingold(A)
        assert pos.shape == (6, 2)
        pos = nx.drawing.layout._fruchterman_reingold(A, dim=3)
        assert pos.shape == (6, 3)
        pos = nx.drawing.layout._sparse_fruchterman_reingold(A)
        assert pos.shape == (6, 2)

    def test_adjacency_interface_scipy(self):
        A = nx.to_scipy_sparse_array(self.Gs, dtype="d")
        pos = nx.drawing.layout._sparse_fruchterman_reingold(A)
        assert pos.shape == (6, 2)
        pos = nx.drawing.layout._sparse_spectral(A)
        assert pos.shape == (6, 2)
        pos = nx.drawing.layout._sparse_fruchterman_reingold(A, dim=3)
        assert pos.shape == (6, 3)

    def test_single_nodes(self):
        G = nx.path_graph(1)
        vpos = nx.shell_layout(G)
        assert not vpos[0].any()
        G = nx.path_graph(4)
        vpos = nx.shell_layout(G, [[0], [1, 2], [3]])
        assert not vpos[0].any()
        assert vpos[3].any()  # ensure node 3 not at origin (#3188)
        assert np.linalg.norm(vpos[3]) <= 1  # ensure node 3 fits (#3753)
        vpos = nx.shell_layout(G, [[0], [1, 2], [3]], rotate=0)
        assert np.linalg.norm(vpos[3]) <= 1  # ensure node 3 fits (#3753)

    def test_smoke_initial_pos_fruchterman_reingold(self):
        pos = nx.circular_layout(self.Gi)
        npos = nx.fruchterman_reingold_layout(self.Gi, pos=pos)

    def test_smoke_initial_pos_arf(self):
        pos = nx.circular_layout(self.Gi)
        npos = nx.arf_layout(self.Gi, pos=pos)

    def test_fixed_node_fruchterman_reingold(self):
        # Dense version (numpy based)
        pos = nx.circular_layout(self.Gi)
        npos = nx.spring_layout(self.Gi, pos=pos, fixed=[(0, 0)])
        assert tuple(pos[(0, 0)]) == tuple(npos[(0, 0)])
        # Sparse version (scipy based)
        pos = nx.circular_layout(self.bigG)
        npos = nx.spring_layout(self.bigG, pos=pos, fixed=[(0, 0)])
        for axis in range(2):
            assert pos[(0, 0)][axis] == pytest.approx(npos[(0, 0)][axis], abs=1e-7)

    def test_center_parameter(self):
        G = nx.path_graph(1)
        nx.random_layout(G, center=(1, 1))
        vpos = nx.circular_layout(G, center=(1, 1))
        assert tuple(vpos[0]) == (1, 1)
        vpos = nx.planar_layout(G, center=(1, 1))
        assert tuple(vpos[0]) == (1, 1)
        vpos = nx.spring_layout(G, center=(1, 1))
        assert tuple(vpos[0]) == (1, 1)
        vpos = nx.fruchterman_reingold_layout(G, center=(1, 1))
        assert tuple(vpos[0]) == (1, 1)
        vpos = nx.spectral_layout(G, center=(1, 1))
        assert tuple(vpos[0]) == (1, 1)
        vpos = nx.shell_layout(G, center=(1, 1))
        assert tuple(vpos[0]) == (1, 1)
        vpos = nx.spiral_layout(G, center=(1, 1))
        assert tuple(vpos[0]) == (1, 1)

    def test_center_wrong_dimensions(self):
        G = nx.path_graph(1)
        assert id(nx.spring_layout) == id(nx.fruchterman_reingold_layout)
        pytest.raises(ValueError, nx.random_layout, G, center=(1, 1, 1))
        pytest.raises(ValueError, nx.circular_layout, G, center=(1, 1, 1))
        pytest.raises(ValueError, nx.planar_layout, G, center=(1, 1, 1))
        pytest.raises(ValueError, nx.spring_layout, G, center=(1, 1, 1))
        pytest.raises(ValueError, nx.spring_layout, G, dim=3, center=(1, 1))
        pytest.raises(ValueError, nx.spectral_layout, G, center=(1, 1, 1))
        pytest.raises(ValueError, nx.spectral_layout, G, dim=3, center=(1, 1))
        pytest.raises(ValueError, nx.shell_layout, G, center=(1, 1, 1))
        pytest.raises(ValueError, nx.spiral_layout, G, center=(1, 1, 1))
        pytest.raises(ValueError, nx.kamada_kawai_layout, G, center=(1, 1, 1))

    def test_empty_graph(self):
        G = nx.empty_graph()
        vpos = nx.random_layout(G, center=(1, 1))
        assert vpos == {}
        vpos = nx.circular_layout(G, center=(1, 1))
        assert vpos == {}
        vpos = nx.planar_layout(G, center=(1, 1))
        assert vpos == {}
        vpos = nx.bipartite_layout(G, G)
        assert vpos == {}
        vpos = nx.spring_layout(G, center=(1, 1))
        assert vpos == {}
        vpos = nx.fruchterman_reingold_layout(G, center=(1, 1))
        assert vpos == {}
        vpos = nx.spectral_layout(G, center=(1, 1))
        assert vpos == {}
        vpos = nx.shell_layout(G, center=(1, 1))
        assert vpos == {}
        vpos = nx.spiral_layout(G, center=(1, 1))
        assert vpos == {}
        vpos = nx.multipartite_layout(G, center=(1, 1))
        assert vpos == {}
        vpos = nx.kamada_kawai_layout(G, center=(1, 1))
        assert vpos == {}
        vpos = nx.arf_layout(G)
        assert vpos == {}

    def test_bipartite_layout(self):
        G = nx.complete_bipartite_graph(3, 5)
        top, bottom = nx.bipartite.sets(G)

        vpos = nx.bipartite_layout(G, top)
        assert len(vpos) == len(G)

        top_x = vpos[list(top)[0]][0]
        bottom_x = vpos[list(bottom)[0]][0]
        for node in top:
            assert vpos[node][0] == top_x
        for node in bottom:
            assert vpos[node][0] == bottom_x

        vpos = nx.bipartite_layout(
            G, top, align="horizontal", center=(2, 2), scale=2, aspect_ratio=1
        )
        assert len(vpos) == len(G)

        top_y = vpos[list(top)[0]][1]
        bottom_y = vpos[list(bottom)[0]][1]
        for node in top:
            assert vpos[node][1] == top_y
        for node in bottom:
            assert vpos[node][1] == bottom_y

        pytest.raises(ValueError, nx.bipartite_layout, G, top, align="foo")

    def test_multipartite_layout(self):
        sizes = (0, 5, 7, 2, 8)
        G = nx.complete_multipartite_graph(*sizes)

        vpos = nx.multipartite_layout(G)
        assert len(vpos) == len(G)

        start = 0
        for n in sizes:
            end = start + n
            assert all(vpos[start][0] == vpos[i][0] for i in range(start + 1, end))
            start += n

        vpos = nx.multipartite_layout(G, align="horizontal", scale=2, center=(2, 2))
        assert len(vpos) == len(G)

        start = 0
        for n in sizes:
            end = start + n
            assert all(vpos[start][1] == vpos[i][1] for i in range(start + 1, end))
            start += n

        pytest.raises(ValueError, nx.multipartite_layout, G, align="foo")

    def test_kamada_kawai_costfn_1d(self):
        costfn = nx.drawing.layout._kamada_kawai_costfn

        pos = np.array([4.0, 7.0])
        invdist = 1 / np.array([[0.1, 2.0], [2.0, 0.3]])

        cost, grad = costfn(pos, np, invdist, meanweight=0, dim=1)

        assert cost == pytest.approx(((3 / 2.0 - 1) ** 2), abs=1e-7)
        assert grad[0] == pytest.approx((-0.5), abs=1e-7)
        assert grad[1] == pytest.approx(0.5, abs=1e-7)

    def check_kamada_kawai_costfn(self, pos, invdist, meanwt, dim):
        costfn = nx.drawing.layout._kamada_kawai_costfn

        cost, grad = costfn(pos.ravel(), np, invdist, meanweight=meanwt, dim=dim)

        expected_cost = 0.5 * meanwt * np.sum(np.sum(pos, axis=0) ** 2)
        for i in range(pos.shape[0]):
            for j in range(i + 1, pos.shape[0]):
                diff = np.linalg.norm(pos[i] - pos[j])
                expected_cost += (diff * invdist[i][j] - 1.0) ** 2

        assert cost == pytest.approx(expected_cost, abs=1e-7)

        dx = 1e-4
        for nd in range(pos.shape[0]):
            for dm in range(pos.shape[1]):
                idx = nd * pos.shape[1] + dm
                ps = pos.flatten()

                ps[idx] += dx
                cplus = costfn(ps, np, invdist, meanweight=meanwt, dim=pos.shape[1])[0]

                ps[idx] -= 2 * dx
                cminus = costfn(ps, np, invdist, meanweight=meanwt, dim=pos.shape[1])[0]

                assert grad[idx] == pytest.approx((cplus - cminus) / (2 * dx), abs=1e-5)

    def test_kamada_kawai_costfn(self):
        invdist = 1 / np.array([[0.1, 2.1, 1.7], [2.1, 0.2, 0.6], [1.7, 0.6, 0.3]])
        meanwt = 0.3

        # 2d
        pos = np.array([[1.3, -3.2], [2.7, -0.3], [5.1, 2.5]])

        self.check_kamada_kawai_costfn(pos, invdist, meanwt, 2)

        # 3d
        pos = np.array([[0.9, 8.6, -8.7], [-10, -0.5, -7.1], [9.1, -8.1, 1.6]])

        self.check_kamada_kawai_costfn(pos, invdist, meanwt, 3)

    def test_spiral_layout(self):
        G = self.Gs

        # a lower value of resolution should result in a more compact layout
        # intuitively, the total distance from the start and end nodes
        # via each node in between (transiting through each) will be less,
        # assuming rescaling does not occur on the computed node positions
        pos_standard = np.array(list(nx.spiral_layout(G, resolution=0.35).values()))
        pos_tighter = np.array(list(nx.spiral_layout(G, resolution=0.34).values()))
        distances = np.linalg.norm(pos_standard[:-1] - pos_standard[1:], axis=1)
        distances_tighter = np.linalg.norm(pos_tighter[:-1] - pos_tighter[1:], axis=1)
        assert sum(distances) > sum(distances_tighter)

        # return near-equidistant points after the first value if set to true
        pos_equidistant = np.array(list(nx.spiral_layout(G, equidistant=True).values()))
        distances_equidistant = np.linalg.norm(
            pos_equidistant[:-1] - pos_equidistant[1:], axis=1
        )
        assert np.allclose(
            distances_equidistant[1:], distances_equidistant[-1], atol=0.01
        )

    def test_spiral_layout_equidistant(self):
        G = nx.path_graph(10)
        pos = nx.spiral_layout(G, equidistant=True)
        # Extract individual node positions as an array
        p = np.array(list(pos.values()))
        # Elementwise-distance between node positions
        dist = np.linalg.norm(p[1:] - p[:-1], axis=1)
        assert np.allclose(np.diff(dist), 0, atol=1e-3)

    def test_rescale_layout_dict(self):
        G = nx.empty_graph()
        vpos = nx.random_layout(G, center=(1, 1))
        assert nx.rescale_layout_dict(vpos) == {}

        G = nx.empty_graph(2)
        vpos = {0: (0.0, 0.0), 1: (1.0, 1.0)}
        s_vpos = nx.rescale_layout_dict(vpos)
        assert np.linalg.norm([sum(x) for x in zip(*s_vpos.values())]) < 1e-6

        G = nx.empty_graph(3)
        vpos = {0: (0, 0), 1: (1, 1), 2: (0.5, 0.5)}
        s_vpos = nx.rescale_layout_dict(vpos)

        expectation = {
            0: np.array((-1, -1)),
            1: np.array((1, 1)),
            2: np.array((0, 0)),
        }
        for k, v in expectation.items():
            assert (s_vpos[k] == v).all()
        s_vpos = nx.rescale_layout_dict(vpos, scale=2)
        expectation = {
            0: np.array((-2, -2)),
            1: np.array((2, 2)),
            2: np.array((0, 0)),
        }
        for k, v in expectation.items():
            assert (s_vpos[k] == v).all()

    def test_arf_layout_partial_input_test(self):
        """
        Checks whether partial pos input still returns a proper position.
        """
        G = self.Gs
        node = nx.utils.arbitrary_element(G)
        pos = nx.circular_layout(G)
        del pos[node]
        pos = nx.arf_layout(G, pos=pos)
        assert len(pos) == len(G)

    def test_arf_layout_negative_a_check(self):
        """
        Checks input parameters correctly raises errors. For example,  `a` should be larger than 1
        """
        G = self.Gs
        pytest.raises(ValueError, nx.arf_layout, G=G, a=-1)


def test_multipartite_layout_nonnumeric_partition_labels():
    """See gh-5123."""
    G = nx.Graph()
    G.add_node(0, subset="s0")
    G.add_node(1, subset="s0")
    G.add_node(2, subset="s1")
    G.add_node(3, subset="s1")
    G.add_edges_from([(0, 2), (0, 3), (1, 2)])
    pos = nx.multipartite_layout(G)
    assert len(pos) == len(G)


def test_multipartite_layout_layer_order():
    """Return the layers in sorted order if the layers of the multipartite
    graph are sortable. See gh-5691"""
    G = nx.Graph()
    for node, layer in zip(("a", "b", "c", "d", "e"), (2, 3, 1, 2, 4)):
        G.add_node(node, subset=layer)

    # Horizontal alignment, therefore y-coord determines layers
    pos = nx.multipartite_layout(G, align="horizontal")

    # Nodes "a" and "d" are in the same layer
    assert pos["a"][-1] == pos["d"][-1]
    # positions should be sorted according to layer
    assert pos["c"][-1] < pos["a"][-1] < pos["b"][-1] < pos["e"][-1]

    # Make sure that multipartite_layout still works when layers are not sortable
    G.nodes["a"]["subset"] = "layer_0"  # Can't sort mixed strs/ints
    pos_nosort = nx.multipartite_layout(G)  # smoke test: this should not raise
    assert pos_nosort.keys() == pos.keys()